• Title/Summary/Keyword: KSU-greenhouse model

Search Result 6, Processing Time 0.023 seconds

Estimation of Surplus Solar Energy in Greenhouse (II) (온실내 잉여 태양에너지 산정(II))

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Hyeon-Tae;Km, Yong-Ju;Yoon, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • This study is about an analysis of surplus solar energy by important greenhouse type using Typical Meteorological Year (TMY) data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generated in greenhouses during the daytime. The 07-auto-1 and 08-auto-1 types showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~29.0% regardless of greenhouse type. About 54.0~225.0% and 53.0~218.0% of required heating energy will be able to be supplemented respectively according to the greenhouse types. The 07-mono-1 and 07-mono-3 types also showed similar heat budget tendencies regardless of greenhouse types. In other words, the ratios of surplus solar energy were about 20.0~26.0% and 21.0~27.0% respectively by greenhouse type. About 57.0~211.0% and 62.0~228.0% of required heating energy will be able to be supplemented by greenhouse type. Except for Daegwallyeong and Suwon area, other regions can cover heating energy only by surplus solar energy, according to the study.

Analysis of Surplus Solar Energy in Greenhouse Based on Setting Temperature (설정온도별 온실내 잉여 태양에너지 분석)

  • Yoon, Yong-Cheol;Kown, Sun-Ju;Kim, Hyeon-Tae;kim, Young-Joo;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.195-206
    • /
    • 2012
  • This study is about an analysis of surplus solar energy by important greenhouse types as well as setting temperature different by using Typical Meteorological Year data which was secured in order to provide basic data for designing an optimum thermal storage system to accumulate surplus solar energy generating in greenhouses during the daytime. Depending on the setting temperatures of $15{\sim}19^{\circ}C$ for greenhouse heating during day and night, surplus heat amounts were varied at the rate of about $0.2{\sim}6.9%/4^{\circ}C$ with some variations according to the greenhouse types and regions. On the other hand, the variations of supplemental heat requirements were about $29.7{\sim}50.0%/4^{\circ}C$. Depending on the setting temperatures for greenhouse ventilations(low $25{\sim}29^{\circ}C$ and high $27{\sim}31^{\circ}C$), surplus heat amounts were varied at the rate of about $-9.9{\sim}-35.6%/4^{\circ}C$ in auto-type greenhouse. But in single-type greenhouses, they were about $-5.1{\sim}-13.4%/4^{\circ}C$. There were not significant changes in supplemental heat amounts depending on setting temperatures of ventilation for both greenhouse types and regions.

Estimation of Surplus Solar Energy in Greenhouse Based on Region (지역별 온실내의 잉여 태양에너지 산정)

  • Yoon, Yong-Cheol;Im, Jae-Un;Kim, Hyeon-Tae;Kim, Young-Joo;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.45 no.4
    • /
    • pp.135-141
    • /
    • 2011
  • This research was conducted to provide basic data of surplus heat for designing solar heat-storage systems. The surplus heat is defined as the heat exhausted by forced ventilations from the greenhouses to control the greenhouse temperature within setting limits. Various simulations were performed to compare the differences of thermal behaviors among greenhouse types as well as among several domestic areas by using pseudo-TMY (Typical Meteorological Year) data manipulated based both on the weather data supplied from Korean Meteorological Administration and the TMY data supplied from The Korean Solar Energy Society. Additional analyses were carried out to examine the required heating energy together with some others such as the energy balances in greenhouses to be considered. The results of those researches are summarized as follows. Regional surplus solar heats for the nine regions with 4-type were analyzed. The results showed that the ratio of surplus solar energy compared to heating energy was the highest in Jeju (about 212.0~228.0%) for each greenhouse type. And followed by Busan, Kwangju, Jinju, Daegu, Daejeon, Jeonju, Suwon and Daekwanryung. And irrespective of greenhouse types, surplus solar energy alone could cover up nearly all of the required supplemental heating energy except for a few areas.

Analyses of Heating and Cooling load in Greenhouse of Protected Horticulture Complex in Taean (태안 시설원예단지의 온실 냉난방 부하 분석)

  • Suh, Won-Myung;Bae, Yong-Han;Heo, Hae-Jun;Kwak, Cheul-Soon;Lee, Suk-Gun;Lee, Jong-Won;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.45-52
    • /
    • 2009
  • This study was conducted in the process that the basic plan of the formation of the thermal energy complex in the Iwon reclaimed land of Taean was being made. Targeting for the large-sized greenhouse to be made in this area, it examined the cooling and heating load and the amount of ventilation, and also analyzed the economic efficiency of heating. The research results are as per the below: The minimum ambient temperature of this area was measured on January 7, 2001, which was $-18.7^{\circ}C$, and the maximum ambient temperature of this area was measured on July 24, 1994, which was $36.7^{\circ}C$. The maximum heating load was 39,011 MJ/h, but the date when the maximum heating load was not consistent with the date when the minimum temperature was measured. The maximum cooling load was 88,562MJ/h, It was approximately 2.3 times of the maximum heating load, which was measured at 14:00 hours on September 4, 2000. The maximum amount of ventilation heat was 138,639MJ/h. Assuming the rate of solar heat use as 10%, 20%, 50%, and 100%, the total sum of cost-benefit would be ₩-193,450,000, ₩-634,930,000, ₩-3,372,960,000, and ₩-9,850,420,000, respectively 20 years later. The break-even point of the geothermal heat pump would be about 4 years for 10% use, about 3 years for 20% or 50% use, and approximately 6 years for 100% use. It was found that 50% use would be most advantageous. In case two systems are combined, the break-even point will be 10 years, 8 years, and 11 years respectively.

Estimation of Surplus Solar Energy in Greenhouse (I) - Case Study Based on 1-2W Type - (온실내 잉여 태양에너지 산정 (I) - 1-2W형을 중심으로 -)

  • Suh, Won-Myung;Bae, Yong-Han;Ryou, Young-Sun;Lee, Sung-Hyoun;Yoon, Yong-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • This research performed to analyze surplus solar energy, which is generated from a greenhouse during daytime, and to make the basic materials for designing thermal energy storage system for surplus solar energy. For this goal, it analyzed the surplus solar energy coming from two types of greenhouse. The results of this research are as per the below: In the case of 1-2W-type greenhouse, this research gave the same temperature and ventilation condition regardless of regions, but it was judged that the quantity of surplus solar energy could be greatly changed, depending on the energy consumed for the photosynthesis and evapotranspiration of crops in the greenhouse, on the heating temperature during daytime and night, on the existence/non-existence of a curtain and its warming effect, and on the ventilation temperature suitable for the overcoming of high temperature troubles or for the optimum cultivation temperature. In the case of a single-span greenhouse, there was a big difference in energy incoming and outgoing by month, but throughout seasons, 85.0 % of the total energy put into the greenhouse was solar energy and the energy input by heating was just 15.0 % of the total. 26.4 % of the total energy input for the greenhouse was used for photosynthesis and evapotranspiration of crops, and 44.2 % of the remaining 73.6 % went out in the form of radiant heat through the surface of the greenhouse. That is, 25.2 % of the total energy loss was just the surplus solar energy. 67.6 % of the total heating energy was concentrically used for 3 months from December to February next year, but the surplus solar energy during the same period was just 19.4 % of the total annual quantity so it was found that the given condition was more restrictive in directly converting the surplus heat into greenhouse heating. Under the disadvantageous circumstance of 3 months from December to February next year, it was possible to supplement 28 % (December) $\sim$ 85 % (February) of heating energy with surplus solar energy.

Analysis of Surplus Solar Energy in Venlo Type Greenhouse (벤로형 온실의 잉여 태양에너지 분석)

  • Choi, Man Kwon;Shin, Yik Soo;Yun, Sung Wook;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • This research analyzed surplus solar energy in Venlo-type greenhouse using acquired typical meteorological year (TMY) data for designing a heat storage system for the surplus solar energy generated in the greenhouse during the day. In the case of paprika, the region-dependent heating loads for Jeju, Jinju, and Daegwanryong area were approximately 1,107.8 GJ, 1,010.0 GJ, and 3,118.5 GJ, respectively. The surplus solar energy measured in Jeju area was 1,845.4 GJ, Jinju area 1,881.8 GJ, and Daegwanryong area 2,061.8 GJ, with the Daegwanryong area showing 11.7% and 9.6% higher than the Jeju region and Jinju region respectively. In the case of chrysanthemums, regional heating loads were determined as 1,202.5 GJ for the Jeju region, 1,042.0 GJ for the Jinju region, and 3,288.6 GJ for the Daegwanryong region; the regional differences were similar to those for paprika. The recorded surplus solar energy was 1,435.2 GJ, 1,536.2 GJ, and 1,734.6 GJ for Jeju, Jinju, and Daegwanryong region, respectively. The Daegwanryong region recorded heating loads 20.9% and 12.9% higher than in the Jeju and Jinju region, respectively. From the above, it can be said that cultivating paprika, compared to cultivating chrysanthemums, requires less heating energy regardless of the region and tends to yield more surplus solar energy. Moreover, if the Daekwan Pass region is excluded, the surplus solar energy exceeds the energy required for heating. Although the required heating energy differs according to regions and crops, cucumbers were found to require the highest amount, followed by chrysanthemum and paprika. The amount of surplus solar energy was the highest in the case of paprika, followed by cucumber and chrysanthemum.