• Title/Summary/Keyword: KSTAR TF coil

Search Result 16, Processing Time 0.027 seconds

Study on Assembly of TF Coil Structure in KSTAR Tokamak (KSTAR 토카막 장치에서 TF 자석 구조물의 조립에 관한 검토)

  • Kim, K.M.;Choi, C.H.;Hong, K.H.;Yang, H.L.;Yu, I.K.;Her, N.I.;Sa, J.W.;Kim, H.K.;Kim, G.H.;Kim, S.T.;Kim, H.T.;Yang, J.S.;Bak, J.S.;Kim, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1262-1267
    • /
    • 2003
  • TF magnet structures are the main structural components in the KSTAR magnet systems to protect the superconducting coils from mechanical, electrical, and thermal loads. TF coil structure supports CS and PF coil system. The inter-coil structure contains adjustable shear keys and conical bolts to provide pre-loading in toroidal direction and to resist against in-plane and out-of-plane forces that are the most critical loads on the TF magnet system. The conical bolts and shear keys are specially designed to assemble easily and to provide a convenient accommodation for a good alignment. The connection plate that is one of the prototype fabrications had been manufactured to study adjustability of conical bolts and shear keys for assembly of TF coil structure. We could measure the misalignments at the keyways and conical holes with the misalignment measuring instrument.

  • PDF

A Study on Thermo-Hydraulic Analysis for KSTAR(Korea Superconducting Tokamak Advanced Research) Cooling Line System (KSTAR(Korea Superconducting Tokamak Advanced Research) 냉각 시스템에 대한 열해석 연구)

  • Kim, H.W.;Ha, J.S.;Kim, D.S.;Lee, J.S.;Choi, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.296-301
    • /
    • 2003
  • A study on the engineering design and numerical thermo-hydraulic analysis for KSTAR TF coil structure cooling system has been conducted. The numerical analyses have been done to verify the engineering design of cooling using the commercial code, FLUENT and in-house code for calculating helium properties which varies with cooling tube's heat transfer. Through the engineering design process based on the steady heat balance concepts, the circular stainless steel tube with inner diameter of 4 mm for TF coil has been selected as cooling tube. From normal operation mode analysis results, total 28 cooling tubes were finally chosen. Also, three dimensional cool down analysis for TF coil with designed cooling tube was satisfied with next three design criteria. First is cooling work termination within a month, second is maximum temperature difference within 50 K in TF coil structure and third is exit helium pressure above 2 bar. Consequently, these cool down scenario results can afford to adopt as operating scenario data when KSTAR facilities operate.

  • PDF

Quench Protection System for the KSTAR Toroidal Field Superconducting Coil

  • Lee, Dong-Keun;Choi, Jae-Hoon;Jin, Jong-Kook;Hahn, Sang-Hee;Kim, Yaung-Soo;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyoung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.178-183
    • /
    • 2012
  • The design of the integrated quench protection (QP) system for the high current superconducting magnet (SCM) has been fabricated and tested for the toroidal field (TF) coil system of the Korea Superconducting Tokamak Advanced Research (KSTAR) device. The QP system is capable of protecting the TF SCM, which consists of 16 identical coils serially connected with a stored energy of 495 MJ at the design operation level at 35.2 kA per turn. Given that the power supply for the TF coils can only ramp up and maintain the coil current, the design of the QP system includes two features. The first is a basic fast discharge function to protect the TF SCM by a dump resistor circuit with a 7 s time constant in case of coil quench event. The second is a slow discharge function with a time constant of 360 s for a daily TF discharge or for a stop demand from the tokamak control system. The QP system has been successfully tested up to 40 kA with a short circuit and up to 34 kA with TF SCM in the second campaign of KSTAR. This paper describes the characteristics of the TF QP systems and test results of the plasma experiment of KSTAR in 2009.

Present Status of the KSTAR Superconducting Magnet System Development (KSTAR 초전도자석계통 개발현황)

  • Park, H.K.;Kim, K.M.;Park, K.R.;Lim, B.S.;Lee, S.I.;Chung, W.H.;Chu, Y.;Baek, S.H.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.298-300
    • /
    • 2003
  • The KSTAR superconducting magnet system consists of 16 TF (Toroidal Field) and 14 PF (Poloidal Field) coils. Both of the TF and PF coil system use internally-cooled Cable-In-Conduit Conductors (CICC). The major achievement in KSTAR magnet system development includes the development of CICC, the development of a full size TF model coil, the development of a background magnetic field generation coil system, the construction of a large scale superconducting magnet. TF and PF coils are in the stage of the fabrication for the KSTAR completion in the year 2005.

  • PDF

Test of the KSTAR Prototype Toroidal Field Coil (KSTAR 프로토 타입 TF 코일 테스트)

  • Chu, Y.;Lee, S.;Park, K.;Baek, S.;Chung, W.;Lim, B.;Park, H.;Oh, O.K.;Kim, K.
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.307-310
    • /
    • 2003
  • The KSTAR (Korea Superconducting Tokamak Advanced Research) prototype TF (Toroidal Field) coil was tested in the superconducting coil test facility in KBSI (Korea basic Science Institute). The test was divided into several campaigns according to the objectives. The objectives of the first campaign were to cool the coil into operating temperature and to find any defect in the coil such as cold leaks. From the results of the first campaign, which was carried out during Jan. 2003, any defect in the TF prototype coil was not found. At the second campaign, the large-current charging experiment was one of the major issues, and was carried out during Aug. 2003 In this paper, the test preparation, and the test results of the second campaign were presented.

  • PDF

Calculation of Joule heating and temperature distribution generated in the KSTAR superconducting magnet structure

  • Seungyon Cho;Park, Chang-Ho;Sa, Jeong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.78-83
    • /
    • 2002
  • Since the KSTAR superconducting magnet structure should be maintained at a cryogenic temperature of about 4 K, even a small amount of heat might be a major cause of the temperature rise of the structure. The Joule heating by eddy currents induced in the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rise of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increased as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure, the maximum temperature was obtained from the PF fast discharging scenario. This means that the vertical disruption and PF fast discharging scenarios are the major scenarios for the design of TF and CS coil structures, respectively. For the reference scenario, the location of maximum temperature spot changes according to the transient current variation of each PF coil.

Development of the KSTAR Superconductor

  • Lim B.S.;Choi J.Y.;Lee S.I.;Kim D.J.;Park W.W.;Woo I.S.;Song Y.J.;Song N.H.;Kim C.S.;Lee D.G.;Kim K.P.;Park H.T.;Joo J.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.25-28
    • /
    • 2006
  • The magnet system of KSTAR(korean Superconducting Tokamak Advanced Research) is consisted of 16 TF (Toroidal Field) coils and 14 PF (Poroidal Field) coils. Internal cooling CICC(Cable in Conduit Conductor) type conductor is used for both of TF and PF coil systems. The conduit material for $Nb_3Sn$ cable is Incoloy 908 and 316LN stainless-steel was used as conduit material for NbTi cable. $Nb_3Sn$ CICC is used for all TF coils and PF1-5 coils while NbTi CICC is used for PF6 and 7 coils. $Nb_3Sn$ and NbTi strands were made for KSTAR superconducting strand. They are satisfied with KSTAR superconducotr requirements. The $Nb_3Sn$ strands supplied from three companies; MELCO (Mitsubishi Electric Co.), OAS (Outokumpu Advanced Superconductor) and KAT (Kiswire Advanced Technology) were used. A special CICC jacketing system is developed for the KSTAR CICC fabrication which uses the tube-mill process consisted of forming, welding, sizing and squaring procedures. The. procedures for cabling and jacketing of CICC for TF and PF coils and their results including the geometrical specification and characteristics of strands are described.

Calculation of Joule Heat and Temperature Distribution Generated on the Superconduction Magnet Structure for the KSTAR Operation Scenarios (KSTAR 운전시나리오에 대해 초전도자석 구조물에 발생되는 줄열 및 온도분포 계산)

  • Seungyon Cho;Jeong Woo Sa;Chang Ho Choi;KSTAR Team
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.56-59
    • /
    • 2002
  • Since the KSTAR magnet structure should be maintained at cryogenic temperature of about 4.5 K, even a small amount of heat might be a major cause of the temperature rising of the superconducting magnet structure. The Joule heating by eddy current induced on the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rising of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increase as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure maximum temperature of 8.4 K was obtained from PF fast discharging scenario.

  • PDF

Superconducting Magnet Power Supply System for the KSTAR 2nd Plasma Experiment and Operation

  • Choi, Jae-Hoon;Lee, Dong-Keun;Kim, Chang-Hwan;Jin, Jong-Kook;Han, Sang-Hee;Kong, Jong-Dae;Hong, Seong-Lok;Kim, Yang-Su;Kwon, Myeun;Ahn, Hyun-Sik;Jang, Gye-Yong;Yun, Min-Seong;Seong, Dae-Kyung;Shin, Hyun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.326-330
    • /
    • 2013
  • The Korea Superconducting Tokamak Advanced Research (KSTAR) device is an advanced superconducting tokamak to establish scientific and technological bases for attractive fusion reactor. This device requires 3.5 Tesla of toroidal field (TF) for plasma confinement, and requires a strong poloidal flux swing to generate an inductive voltage to produce and sustain the tokamak plasma. KSTAR was originally designed to have 16 serially connected TF magnets for which the nominal current rating is 35.2 kA. KSTAR also has 7 pairs of poloidal field (PF) coils that are driven to 1 MA/sec for generation of the tokamak plasma according to the operation scenarios. The KSTAR Magnet Power Supply (MPS) was dedicated to the superconducting (SC) coil commissioning and $2^{nd}$ plasma experiment as a part of the system commissioning. This paper will describe key features of KSTAR MPS for the $2^{nd}$ plasma experiment, and will also report the engineering and commissioning results of the magnet power supplies.

Hydraulic Behaviors of KSTAR PF Coils in Operation

  • Park, S.H.;Chu, Y.;Kim, Y.O.;Yonekawa, H.;Chang, Y.B.;Woo, I.S.;Lee, H.J.;Park, K.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.24-27
    • /
    • 2012
  • The superconducting coil system is one of the most important components in Korea Superconducting Tokamak Advanced Research (KSTAR), which has been operated since 2008. $Nb_3Sn$ and NbTi superconductors are being used for cable-in-conduit conductors (CICCs) of the KSTAR toroidal field (TF) and poloidal field (PF) coils. The CICCs are cooled by forced-flow supercritical helium about 4.5 K. The temperature, pressure and mass flow rate of the supercritical helium in the CICCs are interacting with each other during the operation of the coils. The complicate behaviors of the supercritical helium have an effect on the operation and the efficiency of the helium refrigeration system (HRS) by means of, for instance, pressure drop. The hydraulic characteristics of the supercritical helium have been monitored while the TF coils have stably achieved the full current of 35 kA. In other hands, the PF coils have been operated with various pulsed or bipolar mode, so the drastic changes happen in view of hydraulics. The heat load including AC loss on the coils has been analyzed according to the measurement. These activities are important to estimate the temperature margin in various PF operation conditions. In this paper, the latest hydraulic behaviors of PF coils during KSTAR operation are presented.