• Title/Summary/Keyword: KRT EV Standard

Search Result 1, Processing Time 0.02 seconds

Structural Stiffness Analysis on Doors having Pyramidal Truss Cores in an Urban Transit Vehicle (피라미드 트러스 심재를 채용한 도시철도차량 출입문의 구조강성평가)

  • Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.697-702
    • /
    • 2017
  • A preliminary study was carried out to investigate the feasibility of replacing honeycomb cores with pyramidal truss cores in the doors of urban transit railway vehicles. The doors in current operation are sandwich structures comprising a honeycomb core and reinforcements between two facesheets. The structural requirements of doors for urban transit vehicle are specified in the KRS and KRT and standards, according to which the deflections from three-point bending tests must be limited. To this end, two types of pyramidal truss cores with equivalent mass to a honeycomb core were designed. The structural stiffness of doors with pyramidal truss cores and honeycomb cores were numerically calculated via finite element analysis. The three-point bending models were constructed and simulated, and then the calculated deflections were compared with the requirements specified in the regulations. The results show that doors with pyramidal truss cores satisfied the stiffness requirements, although their deflections were 2.5% larger than that of the honeycomb cores. Therefore, the pyramidal truss cores could replace the aluminum honeycomb cores, and their multi-functional capability could be exploited.