• Title/Summary/Keyword: KPSAM

Search Result 4, Processing Time 0.02 seconds

Analysis on Aerodynamic Heating on Spike and Dome Configuration (스파이크와 돔 형상의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109-113
    • /
    • 2002
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

  • PDF

Development of Infrared Thermal Image Target Simulator System (적외선 열상표적 모사장치 개발)

  • 김병문;심장섭;정순기
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.1
    • /
    • pp.63-70
    • /
    • 2004
  • This paper describes modeling, design and performance test results of infrared thermal image target system which can generate infrared thermal image on aircraft. The system is designed to control image shape and intensity so that the infrared image shape and its emitting intensity are so similar to that of real aircraft. When applying the technique suggested in this paper, the system consumes only small electric power energy about 30(㎾) to generate infrared thermal image which is equivalent to that of real aircraft under full power operation. After verifying performance test, the system developed here has been used as a target for korean potable surface to air missile(KPSAM) at the stage of evaluation test such as target adaptive guidance test and auto-pilot logic test.

  • PDF

Aerodynamic Heating Analysis of Spike-Nosed Missile (스파이크가 부착된 유도탄의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik;Ahn Chang Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.21-29
    • /
    • 2004
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

Analysis on Roll Damping Induced by Propulsion Jet of Rolling Airframe Missile (회전 유도탄의 추진 제트에 의한 롤 댐핑 해석)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.81-86
    • /
    • 2004
  • Between rolling airframe missile and swirling propulsion jet passing through convergent-divergent nozzle of the rocket motor, occur exchanges of angular momentum which result in the increase of roll speed of the missile. This phenomena in called jet roll damping. In the study jet roll damping was formulated from conservation equation of angular momentum. And the maximum value of the jet roll damping of KPSAM was estimated with assumed swirl velocity distribution at nozzle exit and compared with result of computation of axisymmetric compressible turbulent nozzle flow.