• Title/Summary/Keyword: KPRP Design Guide

Search Result 9, Processing Time 0.027 seconds

Comparative Analysis in Sensitivity of Cumulative Fatigue Damage of Mechanistic-Empirical Concrete Pavement Design Programs (역학적-경험적 콘크리트 포장설계 프로그램의 누적피로손상 민감도 비교분석)

  • Park, Joo-Young;Park, Jeong-Woo;Kim, Sang-Ho;Liu, Ju-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.15-24
    • /
    • 2012
  • The MEPDG(Mechanistic-Empirical Pavement Design Guide) developed based on the AASHTO Design Guide helps engineers find optimal alternatives by using traffic volume, climate, material property, and pavement structure as its input parameters. However, because technical problems were found in the MEPDG, efforts to improve the program by settling the problems have been continued. Meanwhile, another mechanistic-empirical design program has been developed by the KPRP(Korea Pavement Research Program) in Korea. To develop and improve the Korean design program reasonably, it is necessary to analyze the MEPDG and then compare programs each other. For concrete pavement, fatigue cracking is predicted by using very complicated logic different from other performance indicators. Therefore, in this paper, transfer functions of the fatigue cracking used in the version of 0.5, 1.0, and 1.1 of the MEPDG were analyzed. Sensitivity of the input parameters to the cumulative fatigue damage was compared to each other by the MEPDG version and KPRP.

Finite Element Analysis of Structural Performance of Anti-Freezing Layer via the Korea Pavement Research Program (한국형포장설계프로그램 및 유한요소해석을 이용한 동상방지층의 구조적 성능 평가)

  • Kim, Dowan;Lee, Junkyu;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • PURPOSES : Nowadays, cavity phenomena occur increasingly in pavement layers of downtown areas. This leads to an increment in the number of potholes, sinkholes, and other failure on the road. A loss of earth and sand from the pavement plays a key role in the occurrence of cavities, and, hence, a structural-performance evaluation of the pavement is essential. METHODS: The structural performance was evaluated via finite-element analysis using KPRP and KICTPAVE. KPRP was developed in order to formulate a Korean pavement design guide, which is based on a mechanical-empirical pavement design guide (M-EPDG). RESULTS: Installation of the anti-freezing layer yielded a fatigue crack, permanent deformation, and international roughness index (IRI) of 13%, 0.7 cm, and 3.0 m/km, respectively, as determined from the performance analysis conducted via KPRP. These values satisfy the design standards (fatigue crack: 20%, permanent deformation: 1.3 cm, IRI: 3.5 m/km). The results of FEM, using KICTPAVE, are shown in Figures 8~12 and Tables 3~5. CONCLUSIONS: The results of the performance analysis (conducted via KPRP) satisfy the design standards, even if the thickness of the anti-freezing layer is not considered. The corresponding values (i.e., 13%, 0.7 cm, and 3.0 m/km) are obtained for all conditions under which this layer is applied. Furthermore, the stress and strain on the interlayer between the sub-grade and the anti-freezing layer decrease gradually with increasing thickness of the anti-freezing layer. In contrast, the strain on the interlayer between the sub-base and the anti-freezing layer increases gradually with this increase in thickness.

Evaluation of Correlation between Aggregate Gradation and Dynamic Modulus with Statistical Analysis (통계분석을 통한 골재입도와 동탄성계수 상관도 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.11-18
    • /
    • 2008
  • In recent, lots of researches for mechanical-empirical design concept for asphalt pavement are on going. AASHTO 2002 Design Guide in USA and KPRP(Korean Pavement Research Program) in Korea are under developing. In these programs, the mechanical properties of hot mix asphalt are a key role for design and analysis. Unfortunately, there is no proper database on the mechanical properties of hot mix asphalt, such as dynamic modulus. The use of dynamic modulus has couple of good advantages which is based on temperature, traffic loading and frequency on pavement. In this research, the verification of the relationship between maximum nominal aggregate size and dynamic modulus has been carried out. Also, test specimen size effect on dynamic modulus has been conducted. Considering the limitation of laboratory testing machine in Korea, test specimen with 100mm diameter and 150mm height is recommended for dynamic modulus test. Also, as the maximum nominal aggregate size increases, the dynamic modulus of hot mix asphalt increases.

  • PDF

Characterization of Asphalt Pavement Distress Using Korean Pavement Research Program (한국형포장설계법을 이용한 아스팔트포장의 파손특성)

  • Lee, Kwan-Ho;Lee, Kyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • The main purpose of this study is to evaluate the main parameters involved in the asphalt pavement distresses, including IRI (International Rough Index), fatigue, and permanent deformation. The main parameters are the region (Seoul and Busan), traffic level, asphalt binder, maximum aggregate of surface course, thickness of the surface course and base. A total of 64 case studies were carried out under the auspices of the KPRP (Korea Pavement Research Program). From the analysis of the KPRP test results, the key factors for the asphalt pavement distress were determined. Considering the effect of one variable in the basic condition, asphalt binder was the major factor having an effect on the distresses for an AADT (Annual Average Daily Traffic) of 5000 in the Seoul area. Among the remaining factors, the results were found to be in the order of the base layer thickness (A), surface layer thickness (B), and aggregate particle size thickness (D). The same results were obtained for an AADT of 10000. In the case of Busan with an AADT of 5000, the same result was obtained as for Seoul. Among the remaining factors, the results were in the order of the base layer thickness (A), aggregate particle thickness (D), and surface layer thickness (B). Even though there was a slight difference in the effect of the traffic level and region, asphalt binder was the parameter having the greatest effect on the asphalt pavement distress. In the case where the effect of multiple parameters was analyzed, the combination of the asphalt binder and base thickness showed a relatively strong effect.

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

Evaluation of Dynamic Modulus based on Aged Asphalt Binder (아스팔트 바인더의 노화특성을 고려한 동탄성계수 평가)

  • Lee, Kwan-Ho;Cho, Kyung-Rae;Lee, Byung-Sik;Song, Yong-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.51-58
    • /
    • 2008
  • Development of a new design guide which is based on empirical-mechanistic concept for pavement design is in action. It is called AASHTO 2002 Design Guide in USA and the KPRP(Korean Pavement Research Project) in Korea. The material characteristic of hot mix asphalt is a key role in the design guide. Therefore it is urgent to get a proper materials database, especially the dynamic modulus of hot mix asphalt. In this research, dynamic modulus test, which is based on aged asphalt binder, has been carried out and proposed the predicted equation of dynamic modulus. Nine different hot mix asphalt with three different asphalt binder have been used for the dynamic modulus test. Short-term aging, which is covers the time for the production of asphalt plant, transportation, lay-down, and compaction, can be simulated at $135^{\circ}C$ with 2 hour curing. Long-term aging has been carried out for a performance period of asphalt pavement. The dynamic modulus of asphalt pavement increases with aging time. As the nominal aggregate size increases, the change of dynamic modulus is not big.

Comparison and Analysis on the Process of Master Curve Determination for Hot Mix Asphalt (아스팔트 혼합물의 마스터곡선 작성 방법의 비교 및 분석)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4199-4204
    • /
    • 2011
  • The dynamic modulus of hot mix asphalt is one of the important indicators to evaluate the durability and performance of asphalt pavement. In resent, the dynamic modulus is suggested by a key property of asphalt pavement design and analysis in AASHTO 2002 Design Guide and Korean Pavement Research Project(KPRP). Master curve from laboratory test results should be needed for pavement design and analysis. The process to get the master curve is standardized. But, there are some setup and testing error at low temperature(-$10^{\circ}C$) and high temperature ($55^{\circ}C$). In this paper, a simplified process which is used 3 testing temperatures (5, 21, 40) is adopted to get the master curve. Comparison was carried out for standard process and simplified process. The suggested process can be used to get the master curve of asphalt pavement, even though some difference was shown at high temperature.

A Study of Reliability of Predictive Models for Permanent Deformation and Fatigue Failure Related to Flexible Pavement Design (연성포장설계의 소성변형과 피로파괴 예측모델에 대한 신뢰성 연구)

  • Kim, Dowan;Han, Beomsoo;Kim, Yeonjoo;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.105-113
    • /
    • 2014
  • PURPOSES: The objective of this paper is to select the confidential intervals by utilizing the second moment reliability index(Hasofer and Lind; 1974) related to the number of load applications to failure which explains the fatigue failure and rut depth that it indicates the permanent deformation. By using Finite Element Method (FEM) Program, we can easily confirm the rut depth and number of load repetitions without Pavement Design Procedures for generally designing pavement depths. METHODS : In this study, the predictive models for the rut depth and the number of load repetitions to fatigue failure were used for determining the second moment reliability index (${\beta}$). From the case study results using KICTPAVE, the results of the rut depth and the number of load repetitions to fatigue failure were deducted by calculating the empirical predictive equations. Also, the confidential intervals for rut depth and number of load repetitions were selected from the results of the predictive models. To determine the second moment reliability index, the spreadsheet method using Excel's Solver was used. RESULTS : From the case studies about pavement conditions, the results of stress, displacement and strain were different with depth conditions of layers and layer properties. In the clay soil conditions, the values of strain and stresses in the directly loaded sections are relatively greater than other conditions. It indicates that the second moment reliability index is small and confidential intervals for rut depth and the number of load applications are narrow when we apply the clay soil conditions comparing to the applications of other soil conditions. CONCLUSIONS : According to the results of the second moment reliability index and the confidential intervals, the minimum and maximum values of reliability index indicate approximately 1.79 at Case 9 and 2.19 at Case 22. The broadest widths of confidential intervals for rut depth and the number of load repetitions are respectively occurred in Case 9 and Case 7.