• Title/Summary/Keyword: KOSPI-listed Firms

Search Result 72, Processing Time 0.019 seconds

SNS Effect of the negative event on the Firm Performance: Comparison between Pre and Post SNS media appearance

  • Kim, Sang Yong;Lee, Da Eun
    • Asia Marketing Journal
    • /
    • v.16 no.1
    • /
    • pp.21-33
    • /
    • 2014
  • When the negative event is published, the company tends to go through the negative impact on the firm performance. Especially, with the SNS, the negative event is instantly spread on indefinite region so the impact seems bigger than the period before the SNS media appearance. It seems that everyone considers the SNS media impact on the firm performance quite big. However, there has been no empirical study on the impact comparison on the firm performance between pre and post SNS media occurrence periods. This study tries to empirically compare the impact of the negative event on the firm performance between pre and post SNS media appearance. Our study starts fromthe basic but not verified question; Does really the negative event have more negative impact in the post-SNS-occurrence period than in the pre-SNS-occurrence period? In order to examine the impact of the negative publicity on firm performance in two eras, pre and post SNS media appearance, we used CAR (Cumulative Abnormal Resturns) model. By using this model, we could verify the statistical significance of cumulative abnormal returns in market between before and after the events. For event samples, we focused on food manufacturers and collected the negative events from 1991 to 2003 for pre-SNS occurrence period, and from 2010 to 2013 for post-SNS occurrence period. Based on the listed food companies at KOSPI, we researched Naver News Library (newslibrary.naver.com) and Naver News (news.naver.com) for all the individual negative events published for both periods. Firm returns data were collected from TS 2000 (KOCO Info) and market portfolio data were collected from KRX Exchange. Through our empirical analysis, our finding is interesting to note that the type of events differently influences on the firm performance. With the SNS, the health-related events have influence on the firm performance 'after the event day' whereas the company behavior trust events have influence 'before the event day'. Our findings have implications for management. When a negative event directly related to or threatening customers or their life such as health, it is crucial to fix up the situation right after the event occurs. On the other hand, when a negative event is not publicly available information such as company behavior trust, it is important for marketers to strengthen the firms' trust reputation and control the bad WOM before the event.

  • PDF

Dynamic forecasts of bankruptcy with Recurrent Neural Network model (RNN(Recurrent Neural Network)을 이용한 기업부도예측모형에서 회계정보의 동적 변화 연구)

  • Kwon, Hyukkun;Lee, Dongkyu;Shin, Minsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.139-153
    • /
    • 2017
  • Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.