• Title/Summary/Keyword: KOREN/KREONET

Search Result 2, Processing Time 0.015 seconds

A Study of Future Internet Testbed Construction using NetFGA/OpenFlow Switch on KOREN/KREONET (KOREN/KREONET기반 NetFPGA/OpenFlow 스위치를 이용한 미래인터넷 테스트 베드 구축 방안 연구)

  • Park, Man-Kyu;Jung, Whoi-Jin;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.109-117
    • /
    • 2010
  • Building a large-scale testbed for Future Internet is very important to evaluate a new protocol and new network architecture designed by clean-slate approach. In Korea, new Future Internet testbed project, called FIRST (Future Internet Research for Sustainable Testbed), has been started since Mar. 2009 to design and test new protocols. This project is working together with ETRI and 5 universities. The FIRST@PC is to implement a virtualized hardware-accelerated PC-node by extending the functions of NetFPGA card and build a Future Internet testbed on the KOREN and KREONET for evaluating newly designed protocols and interesting applications. In this paper, we first briefly introduce FIRST@PC project and explain a 'MAC in IP Capsulator' user-space program using raw-socket in Linux to interconnect OpenFlow enabled switch sites on the KOREN and KREONET. After that, we address test results for TCP throughput performance for varying packet size. The test results show that the software based capsulator can support a reasonable bandwidth performance for most of applications.

NetFPGA-based Scheduler Implementation and its Performance Evaluation for QoS of Virtualized Network Resources on the Future Internet Testbed (미래인터넷 테스트베드 가상화 자원의 QoS를 위한 NetFPGA 기반 스케쥴러 구현 및 성능 평가)

  • Min, Seok-Hong;Jung, Whoi-Jin;Kim, Byung-Chul;Lee, Jae-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.42-50
    • /
    • 2011
  • Recently, research activities on the future internet are being actively performed in foreign and domestic. In domestic, ETRI and 4 universities are focused on implementation of a testbed for research on the future internet named as 'FiRST(Future Internet Research for Sustainable Testbed)'. In the 'FiRST' project, 4 universities are performing a project in collaboration named as 'FiRST@PC' project that is for an implementation of the testbed using the programmable platform-based openflow switches. Currently, the research on the virtualization of the testbed is being performed that has a purpose for supporting an isolated network to individual researcher. In this paper, we implemented a traffic scheduler for providing QoS by using the programmable platform that performs a hardware-based packet processing and we are implemented a testbed using that traffic scheduler. We perform a performance evaluation of the traffic scheduler on the testbed. As a result, we show that the hardware-based NetFPGA scheduler can provide reliable and stable QoS to virtualized networks of the Future Internet Testbed.