• Title/Summary/Keyword: KOMPSAT2

Search Result 669, Processing Time 0.027 seconds

Epipolar Resampling from Kompsat-2 and Kompsat-3 (아리랑 위성 2호와 3호를 이용한 이종 영상 간 에피폴라 영상 생성)

  • Song, Jeong-Heon;Oh, Jae-Hong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.156-166
    • /
    • 2014
  • As of 2014, KARI (Korea Aerospace Research Institute) operates two high-resolution satellites such as Kompsat-2 and Kompsat-3. Kompsat-3 has capability of in-track stereo images acquisition but it is quite limited because the stereo mode lowers the spatial coverage in a trajectory. In this paper we analyze the epipolar geometry from the heterogeneous Kompsat-2 and Kompsat-3 image combination to epipolar resample them for 3D spatial data acquisition. The analysis was carried out using the piecewise approach with RPCs (Rational Polynomial Coefficients) and the result showed the parabolic epipolar curve pattern. We also concluded that the third order polynomial transformation is required for epipolar image resampling. The resampled image pair showed 1 pixel level of y-parallax and can be used for 3D display and digitizing.

A Comparative Analysis of Field Surveying Vegetation Data and NDVI from KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성영상을 이용한 정규식생지수와 현장식생 자료의 비교분석)

  • Kim, Gi-Hong;Lee, Jong-Seol;Jung, Jae-Hak;Won, Sang-Yeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • In this study we tried to compare and analyze KOMPSAT-2 NOVI and vegetation coverage(VC) which is investigated by fieldwork. To standardize KOMPSAT-2 NOVI, we adjusted NOVI using reference data which is atmospheric corrected MODIS NDVI. Each vegetation coverage point data was surveyed in field using portable GPS and compared with NDVI of satellite imagery. As a results, there was high level of correlation in vegetation coverage and NOVI.

Definition and Generation of Level 0 Product for KOMPSAT-2

  • Shin, Ji-Hyeon;Kim, Moon-Gyu;Park, Sung-Og
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.810-814
    • /
    • 2002
  • According to the image level definition for KOMPSAT-2 in KOMPSAT-2 Ground Station Specification, the level 0 is frame formatted, unprocessed data at full resolution; any and all communications artifacts (e.g., synchronization frames, communications headers) removed. The level 0 is used for two purposes: 1) exchange of imagery between image receiving & processing element (IRPE), and 2) image transfer from the Receiving & Archiving Subsystem to Search & Processing Subsystem. On-board processing of imagery data of KOMPSAT-2 includes JPEG-like compression and encryption besides conventional CCSDS packetization. The encryption is used to secure imagery data from any intervention during downlink and compression allows real-time downlink of image data reducing data rate produced from the camera. While developing ground receiving system for KOMPSAT-2, it was necessarily to define level 0 products. In this paper, we will suggest level 0 product definition for KOMPSAT-2 and explain reasons of the decisions made. The key factor used while defining the level 0 products is the efficiency of whole ground receiving system. The latter half of the paper will explain the implementation of software that generates level 0 products. The necessary steps to produce level 0 products will be explained, and the performance achieved will be presented.

  • PDF

Accuracy Assessment of 3D Geopositioning of KOMPSAT-2 Images Using Orbit-Attitude Model (KOMPSAT-2 영상의 정밀궤도기반모델을 이용한 3차원 위치결정 정확도 평가)

  • Lee, Sang-Jin;Kim, Jung-Uk;Choi, Yun-Soo;Jung, Seung-Kyoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.3-10
    • /
    • 2010
  • In this study, the orbit-based sensor modeling is applied to the digital plotting and the accuracy of digital plotting is analyzed. The KOMPSAT-2 satellite image with orbit-attitude model is used for the analysis. The precise sensor modeling with various combination of parameters is performed for the stereo satellite image. In addition, we analyze the error range of ground control points by applying the result of stereo modeling to digital survey system. According to the result, it is possible to produce digital map using stereo image with a small number of GCPs when the orbit-based sensor modeling for KOMPSAT-2 is applied. This means that it is suitable for the generation of digital map on a scale of 1/5,000 to 1/25,000 considering the resolution of KOMPSAT-2 image.

Accuracy Evaluation of DEM Produced by using KOMPSAT-5 InSAR Image (KOMPSAT 5호 InSAR영상을 이용한 DEM제작 정확도 평가)

  • Han, Seung-Hee
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.39-47
    • /
    • 2017
  • The SAR payload of the KOMPSAT-5 is equipped with an X-band (9.66GHz) microwave-based sensor. Especially, since it has a fixed antenna that can be electronically steered with respect to the azimuth and elevation planes, various applications are expected. This study evaluates the production performance and the accuracy of the DEM by producing DEM using the HR and UH mode images of KOMPSAT-5. To evaluate the production performance of the DEM, the sensitivity of DEM was assessed through a baseline analysis and $2{\pi}$ ambiguity; it was found to have good production performance. In addition, to evaluate the accuracy of the produced DEM, 30 check points were compared with SRTM data. As a result, STDEV ${\pm}15-20m$ accuracy was obtained. If the accuracy of the DEM is improved by adjusting the parameters of the filtering method or phase unwrapping method in the future, it will be possible to widely use the KOMPSAT-5 image for environmental and disaster monitoring.

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

Comparison of High Resolution Image by Ortho Rectification Accuracy and Correlation Each Band (고해상도 영상의 정사보정 정확도 검증 및 밴드별 상관성 비교연구)

  • Jin, Cheong-Gil;Park, So-Young;Kim, Hyung-Seok;Chun, Yong-Sik;Choi, Chul-Uong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.35-45
    • /
    • 2010
  • The objective of this study is to verify the positional accuracy by performing the orthometric corrections on the high resolution satellite images and to analyze the band correlation between the high resolution images corrected with orthometric correction. The objectives also included an analysis on the correlation of NDVI. For the orthometric correction of images from KOMPSAT2 and IKONOS, systematic errors were removed in use of RPC data, and non-planar distortions were corrected with GPS surveying data. Also, by preempting the image points at the same positions within ortho images, a comparison was performed on positional accuracies between image points of each image and GPS surveying points. The comparison was also made on the positional accuracies of image points. between the images. For correlation of band and correlation of NDVI, the descriptive statistics of DN values were acquired for respective bands by adding the Quickbird images and Aerial Photographs undergone through orthometric correction at the time of purchase. As result, from a comparison on positional accuracies of Orthoimages from KOMPSAT2 and Ortho Images of IKONOS was made. From the comparison the distance between the image points within each image and GPS surveying points was identified as 3.41m for KOMPSAT2 and as 1.45m for IKONOS, presenting a difference of 1.96m. Whereas, RMSE between image points was identified as 1.88m. The level of correlation was measured by using Quickbird, KOMPSAT2, IKONOS and Aerial Photographs between inter-image bands and NDVI, showing that there were high levels of correlation between Quickbird and IKONOS identified from all bands as well as from NDVI, except a high level of correlation that was identified between the Aerial Photographs and KOMPSAT2 from Band 2. Low levels of correlation were also identified between Quickbird and Aerial Photographs from Band 1. and between KOMPSAT2 and IKONOS from Band 2 and Band 4, whereas, KOMPSAT2 showed low correlations with Aerial Photographs from Band 3. For NDVI, KOMPSAT2 showed low level of correlations with both of QuickBird and IKONOS.

PREPARATION OF CARBON DIOXIDE ABSORPTION MAP USING KOMPSAT-2 IMAGERY

  • Kim, So-Ra;Lee, Woo-Kyun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.200-203
    • /
    • 2008
  • The objective of this study is to produce the $CO_2$ (carbon dioxide) absorption map using KOMPSAT-2 imagery. For estimating the amount of $CO_2$ absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated by the crown width extracted from KOMPSAT-2 imagery. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC (Intergovernmental Panel on Climate Change) guideline, was used to convert the stand biomass into the amount of $CO_2$ absorption. Thereafter, the KOMPSAT-2 imagery was classified with the SBC (segment based classification) method in order to quantify $CO_2$ absorption by tree species. As a result, the map of $CO_2$ absorption was produced and the amount of $CO_2$ absorption was estimated by tree species.

  • PDF

Mission Control System for KOMPSAT-2 Operations (다목적 실용위성2호 관제시스템 운용)

  • Jeong, Won-Chan;Lee, Byeong-Seon;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.76-82
    • /
    • 2006
  • The Mission Control System for KOMPSAT-2 was developed by ETRI and is being operated at Satellite Control Center at KARI to monitor and control KOMPSAT-2 (KOrea Multi-Purpose Satellite) which was launched in July 28th, 2006. MCE provides the functions such as telemetry reception and processing, telecommand generation and transmission, satellite tracking and ranging, orbit prediction and determination, attitude maneuver planning, satellite simulation, etc. KOMPSAT-2 is the successor of KOMPSAT-1 which is an earth-observation satellite. KOMPSAT-2 has higher resolution image taking ability due to MSC (Multi Spectral Camera) payload in the satellite and precise orbit and attitude determination by Mission Control System. It can produce one meter resolution image compared to six meter resolution image by KOMPSAT-1.

  • PDF

Geometric Accuracy of KOMPSAT-2 PAN Data According to Sensor Modeling (센서모델링 특성에 따른 KOMPSAT-2 PAN 영상의 정확도)

  • Seo, Doo-Chun;Yang, Ji-Yeon
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2009
  • In order to help general users to analyze the KOMPSAT-2 data, an application of sensor modeling to commercial software was explained in this document. The sensor modeling is a basic step to extract the quantity and quality information from KOMPSAT-2 data. First, we introduced the contents and type of ancillary data offered with KOMPSAT-2 PAN image data, and explained how to use it with commercial software. And then, we applied the polynomial-base and refine RFM sensor modeling with ground control points. In the polynomial-base sensor modeling, the accuracy which is average RMSE of check points is highest when the satellite position was calculated by type of 1st order function and the satellite attitude was calculated by type of 1st order function for (Y axis), (Z axis) or constant for (X axis), (Y axis), (Z axis) in perspective center position and satellite attitude parameters. As a result of refine RFM sensor modeling, the accuracy is less than 1 pixel when we applied affine model..

  • PDF