• Title/Summary/Keyword: KOMPSAT-II

Search Result 43, Processing Time 0.04 seconds

A Study on the Geomagnetic Reference Field Modeling from the Triaxial Magnetometer Data Onboard KOMPSAT-II (아리랑위성 2호의 삼축자력계로부터 관측된 지구자기장 모델 연구)

  • Kim, Hyung-Rae;Hwang, Jong-Sun;Kim, Jeong-Woo;Lee, Seon-Ho
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.377-384
    • /
    • 2012
  • The main field component of the Earth's magnetic field was modeled from the tri-axial magnetometer onboard KOrean MultiPurpose SATellite-II (KOMPSAT-II) for the purpose of satellite attitude control. The model computed by the KOMPSAT-II magnetometer measurement data is compared with the International Geomagnetic Reference Field (IGRF) model of a degree of up to 13 in spherical harmonic coefficients. The previous study with KOMPSAT-I (Kim et al. 2004) indicated a good correlation of power spectrum of spherical harmonic coefficients with respect to the degree up to 5. This study, however, showed an agreement of the degree up to 8-9 of the coefficient power spectrum and a discrepancy between degrees 10 and 13. We have concluded that relevant data selection process, removal of the external field from the data in the high latitude region, an accuracy of the magnetometer all play an important role in finding a coherence with the IGRF model. This study will be extended to the secular variation model of geomagnetism if longer-period data become available.

The Structure and Operation of KOMPSAT-II Memory (다목적실용위성 2호 메모리 구조와 운영)

  • 이종태;이상규;이상택;이도경
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.421-424
    • /
    • 2003
  • The KOMPSAT-II has a MSC(Multi-Spectral Camera) payload for earth observatory. The image data acquired during the pass over the Korean Peninsula can be sent to the ground station directly. But the image data out of the contact range should be stored temporally for later transmission. The KOMPSAT-II has a device for this purpose called the DCSU(Data Compression and Storage Unit) and the DCSU also performs compression functions for saving storage space and transmission time to send image data to the ground station. In this paper, we'd like to introduce the DCSU memory structures and operation.

  • PDF

THE IMPLEMENTATION METHOD AND TEST OF TELEMETRY TREND ANALYSIS IN KOMPSAT-2

  • Kim Myungja;Jung Won-Chan;Kim Jae-Hoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.235-238
    • /
    • 2004
  • In this paper, we will present the implementation method of telemetry trend analysis in KOMPSAT-2 (KOrea Multi Purpose SATellite II), and then we will show the test result of trend analysis with telemetry data. Trend Analysis function is one of the module of Satellite Operations Subsystem and that analyzes the telemetry data of satellite state of health and telemetry trend for operation support. With this system many clients can analyze telemetry data simultaneously.

  • PDF

MONITORING OF MOUNTAINOUS AREAS USING SIMULATED IMAGES TO KOMPSAT-II

  • Chang Eun-Mi;Shin Soo-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.653-655
    • /
    • 2005
  • More than 70 percent of terrestrial territory of Korea is mountainous areas where degradation becomes serious year by year due to illegal tombs, expanding golf courses and stone mine development. We elaborate the potential usage of high resolution image for the monitoring of the phenomena. We made the classification of tombs and the statistical radiometric characteristics of graves were identified from this project. The graves could be classified to 4 groups from the field survey. As compared with grouping data after clustering and discriminant analysis, the two results coincided with each other. Object-oriented classification algorithm for feature extraction was theoretically researched in this project. And we did a pilot project, which was performed with mixed methods. That is, the conventional methods such as unsupervised and supervised classification were mixed up with the new method for feature extraction, object-oriented classification method. This methodology showed about $60\%$ classification accuracy for extracting tombs from satellite imagery. The extraction of tombs' geographical coordinates and graves themselves from satellite image was performed in this project. The stone mines and golf courses are extracted by NDVI and GVI. The accuracy of classification was around 89 percent. The location accuracy showed extraction of tombs from one-meter resolution image is cheaper and quicker way than GPS method. Finally we interviewed local government officers and made analyses on the current situation of mountainous area management and potential usage of KOMPSAT-II images. Based on the requirement analysis, we developed software, which is to management and monitoring system for mountainous area for local government.

  • PDF

Analysis on the Measurement Results of the Focus Motor Position in MSC (Multi-Spectral Camera) on KOMPSAT - II

  • Heo, H.P.;Kong, J.P.;Kim, Y.S.;Park, J.E.;Chang, Y.J.;Lee, S.H.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.372-375
    • /
    • 2006
  • The MSC is a high resolution multi-spectral camera system which is mounted on the KOMPSAT-II satellite. The electro-optic camera system has a refocusing mechanism which can be used in-orbit by ground commands. By adjusting locations of some elements in optics, the system can be focused precisely. The focus mechanism in MSC is implemented with stepper motor and potentiometer. By reading the value of the potentiometer, rough position of the motor can be understood. The exact location of the motor can not be acquired because the information from the potentiometer can not be so accurate. However, before and after certain events of the satellite, like a satellite launch, the direction of the movement or order of the magnitude of the movement can be understood. In this paper, the trend analysis of the focus motor position during the ground test phase is introduced. This result can be used as basic information for the focus calibration after launch. By studying the long term trend, deviation from the best focal point can be understood. The positions of the focus motors after launch are also compared.

  • PDF

ANALYSIS ON RECEIVING PERFORMANCE FOR KOMPSAT-5 X-BAND IMAGE DATA

  • Park, Durk-Jong;Kang, Chi-Ho;Ahn, Sang-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.208-211
    • /
    • 2008
  • Band-limited filtering will be applied to remove interference resulted from two neighbored channels in the transmission of KOMPSAT-5 X-Band image data. In that case, receiver in ground station should prepare righteous matched filter to avoid huge BER degradation depending on the matched filter of COTS receiver. As an effort to simulate the bandlimited filtering, test filter was designed and manufactured on the basis of main specification for output filter of KOMPSAT-5 satellite. Consequently, 1.8dB of BER degradation was measured at the output of test band-pass filter, but the degradation was downsized up to 0.4dB thanks to the adaptive matched filter of COTS receiver.

  • PDF

THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(II): SINGLE EVENT EFFECT (아리랑 2호의 방사능 환경 및 영향에 관한 분석(II)- SINGLE EVENT 영향 중심으로 -)

  • 백명진;김대영;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.163-173
    • /
    • 2001
  • In this paper, space radiation environment and single event effect(SEE) have been analyzed for the KOMPSAT-2 operational orbit. As spacecraft external and internal space environment, trapped proton, SEP(solar energetic particle) and GCR(galactic cosmic ray) high energy Protons and heavy ions spectrums are analyzed. Finally, SEU and SEL rate prediction has been performed for the Intel 80386 microprocessor CPU that is planned to be used in the KOMPSAT-2. As the estimation results, under nominal operational condition, it is predicted that trapped proton and high energetic proton induced SBU effect will not occur. But, it is predicted that heavy ion induced SEU can occur several times during KOMPSAT-2 3-year mission operation. KOMPSAT-2 has been implementing system level design to mitigate SEU occurrence using processor CPU error detection function of the on-board flight software.

  • PDF

Shock Separation Test of KOMPSAT-II (다목적 실용위성 2호 충격 분리 시험)

  • 우성현;김홍배;문상무;김영기;김규선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1000-1005
    • /
    • 2003
  • The shock separation test simulates the environmental effects of the spacecraft separation from launch vehicle. The shock separation test for a structural model of KOMPSAT-Ⅱ(Korea Multi-Purpose SATellite Ⅱ) was performed in SITC(Satellite Integration & Test Center) launch environmental test hall at KARI(Korea Aerospace Research Institute) to verify the shock test requirement of the spacecraft, to predict the induced acceleration responses on the primary structures and payloads by the explosion of pyre-lock and to perform mechanical fit check. The spacecraft with S/A was mated vertically to LV(Launch Vehicle) adapter simulator via a clamp band, then hoisted and suspended above a foam test bed by four isolation springs secured to the spacecraft hoist fittings to isolate the payload platform shock wave from the sling elements. For separation process, real pyre-devices were used and the time response signals from 60 accelerometers installed on the interested points was acquired and recorded. The SRS responses for each response channels were calculated and the achieved SRS's on the separation plane was reviewed and evaluated in comparison to the ICD(Interface Control Document) value.

  • PDF

Preliminary Design of Electric Interface It Software Protocol of MSC(Multi-Spectral Camera) on KOMPSAT-II (다목적실용위성 2호 고해상도 카메라 시스템의 전기적 인터페이스 및 소프트웨어 프로토콜 예비 설계)

  • 허행팔;용상순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.101-101
    • /
    • 2000
  • MSC(Multispectral Camera), which will be a unique payload on KOMPSAT-II, is designed to collect panchromatic and multi-spectral imagery with a ground sample distance of 1m and a swath width of 15km at 685km altitude in sun-synchronous orbit. The instrument is designed to have an orbit operation duty cycle of 20% over the mission life time of 3 years. MSC electronics consists of three main subsystems; PMU(Payload Management Unit), CEU(Camera Electronics Unit) and PDTS(Payload Data Transmission Subsystem). PMU performs all the interface between spacecraft and MSC, and manages all the other subsystems by sending commands to them and receiving telemetry from them with software protocol through RS-422 interface. CEU controls FPA(Focal Plane Assembly) which contains TDI(Timc Delay Integration) CCD(Charge Coupled Device) and its clock drivers. PMU provides a Master Clock to synchronize panchromatic and multispectral camera. PDTS performs compression, storage and encryption of image data and transmits them to the ground station through x-band.

  • PDF