• Title/Summary/Keyword: KOMPSAT-2 Imagery

Search Result 131, Processing Time 0.025 seconds

A Method for Quantitative Quality Assessment of Mosaic Imagery (모자이크 영상의 정량적 품질평가 방법)

  • Oh, Kwan-Young;Jung, Hyung-Sup;Lee, Kwang-Jae;Lee, Ha-Seong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • The purpose of this paper is to provide a compact overview of the state-of-art image mosaic algorithms in commercial softwares and to propose objective assessment method of that. Among them, several algorithms, widely used and high quality, result in the mosaic image by applying to seven different kinds of seasons of KOMPSAT-2 images and then consequently each result is analyzed visually. Moreover, quality index is suggested to assess the similarity with colors regarding adjacency images and then it is performed by comparing and analyzing the visual and quantitative results. Consequently, we found out the suggested quality index is feasible.

Coral Reef Habitat Monitoring Using High-spatial Satellite Imagery : A Case Study from Chuuk Lagoon in FSM (고해상도 위성영상을 이용한 산호초 서식환경 모니터링 : 축라군 웨노섬을 중심으로)

  • Min, Jee-Eun;Ryu, Joo-Hyung;Choi, Jong-Kuk;Park, Heung-Sik
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.53-61
    • /
    • 2010
  • The distribution of coral reefs can be an indicator of environmental or anthropogenic impacts. Here, we present a habitat map of coral reefs developed using high-spatial satellite images. The study area was located on the north-eastern part of Weno island, in the Chuuk lagoon of Federated States of Micronesia. Two fieldwork expeditions were carried out between 2007 and 2008 to acquire optical and environmental data from 121 stations. We used an IKONOS image obtained in December 2000, and a Kompsat-2 image obtained in September 2008 for the purpose of coral reef mapping. We employed an adapted version of the object-based classification method for efficient classification of the high-spatial satellite images. The habitat map generated using Kompsat-2 was 72.22% accurate in terms of comparative analysis with in-situ measurements. The result of change detection analysis between 2000 and 2008 showed that coral reef distribution had decreased by 6.27% while seagrass meadows had increased by 8.0%.

Positioning Accuracy Analysis of KOMPSAT-3 Satellite Imagery by RPC Adjustment (RPC 조정에 의한 KOMPSAT-3 위성영상의 위치결정 정확도 분석)

  • Lee, Hyoseong;Seo, Doochun;Ahn, Kiweon;Jeong, Dongjang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.503-509
    • /
    • 2013
  • The KOMPSAT-3 (Korea Multi-Purpose Satellite-3), was launched on May 18, 2012, is an optical high-resolution observation mission of the Korea Aerospace Research Institute and provides RPC(Rational Polynomial Coefficient) for ground coordinate determination. It is however need to adjust because RPC absorbs effects of interior-exterior orientation errors. In this study, to obtain the suitable adjustment parameters of the vendor-provided RPC of the KOMPSAT-3 images, six types of adjustment models were implemented. As results, the errors of two and six adjustment parameters differed approximately 0.1m. We thus propose the two parameters model, the number of control points are required the least, to adjust the KOMPSAT-3 R PC. According to the increasing the number of control points, RPC adjustment was performed. The proposed model with a control point particularly did not exceed a maximum error 3m. As demonstrated in this paper, the two parameters model can be applied in RPC adjustment of KOMPSAT-3 stereo image.

ATMOSPHERIC AEROSOL DETECTION AND ITS REMOVEAL FOR SATELLITE DATA

  • Lee, Dong-Ha;Lee, Kwon-Ho;Kim, Young-Joon
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.598-601
    • /
    • 2006
  • Satellite imagery may contain large regions covered with atmospheric aerosol. A high-resolution satellite imagery affected by non-homogenous aerosol cover should be processed for land cover study and perform the radiometric calibration that will allow its future application for Korea Multi-Purpose Satellite (KOMPSAT) data. In this study, aerosol signal was separated from high resolution satellite data based on the reflectance separation method. Since aerosol removal has a good sensitivity over bright surface such as man-made targets, aerosol optical thickness (AOT) retrieval algorithm could be used. AOT retrieval using Look-up table (LUT) approach for utilizing the transformed image to radiometrically compensate visible band imagery is processed and tested in the correction of satellite scenery. Moderate Resolution Imaging Spectroradiometer (MODIS), EO-1/HYPERION data have been used for aerosol correction and AOT retrieval with different spatial resolution. Results show that an application of the aerosol detection for HYPERION data yields successive aerosol separation from imagery and AOT maps are consistent with MODIS AOT map.

  • PDF

EXTRACTING BASE DATA FOR FLOOD ANALYSIS USING HIGH RESOLUTION SATELLITE IMAGERY

  • Sohn, Hong-Gyoo;Kim, Jin-Woo;Lee, Jung-Bin;Song, Yeong-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.426-429
    • /
    • 2006
  • Flood caused by Typhoon and severe rain during summer is the most destructive natural disasters in Korea. Almost every year flood has resulted in a big lost of national infrastructure and loss of civilian lives. It usually takes time and great efforts to estimate the flood-related damages. Government also has pursued proper standard and tool for using state-of-art technologies. High resolution satellite imagery is one of the most promising sources of ground truth information since it provides detailed and current ground information such as building, road, and bare ground. Once high resolution imagery is utilized, it can greatly reduce the amount of field work and cost for flood related damage assessment. The classification of high resolution image is pre-required step to be utilized for the damage assessment. The classified image combined with additional data such as DEM and DSM can help to estimate the flooded areas per each classified land use. This paper applied object-oriented classification scheme to interpret an image not based in a single pixel but in meaningful image objects and their mutual relations. When comparing it with other classification algorithms, object-oriented classification was very effective and accurate. In this paper, IKONOS image is used, but similar level of high resolution Korean KOMPSAT series can be investigated once they are available.

  • PDF

Evaluation of the Normalized Burn Ratio (NBR) for Mapping Burn Severity Base on IKONOS-Images (IKONOS 화상 기반의 산불피해등급도 작성을 위한 정규산불피해비율(NBR) 평가)

  • Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.195-203
    • /
    • 2008
  • Burn severity is an important role for rehabilitation of burned forest area. This factor led to the pilot study to determine if high resolution IKONOS images could be used to classify and delinenate the bum severity over burned areas of Samchock Fire and Cheongyang-Yesan Fire. The results of this study can be summarized as follows: 1. The modified Normalized Bum Ratio (NBR) for IKONOS imagery can be evaluated using burn severity mapping. 2. IKONOS-derived NBR imagery could provide fire scar and detail mapping of burned areas at Samchock fire and Cheongyang-Yesan Burns.

Deforestation Analysis Using Unsupervised Change Detection Based on ITPCA (ITPCA 기반의 무감독 변화탐지 기법을 이용한 산림황폐화 분석)

  • Choi, Jaewan;Park, Honglyun;Park, Nyunghee;Han, Soohee;Song, Jungheon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1233-1242
    • /
    • 2017
  • In this study, we tried to analyze deforestation due to forest fire by using KOMPSAT satellite imagery. For deforestation analysis, unsupervised change detection algorithm is applied to multitemporal images. Through ITPCA (ITerative Principal Component Analysis) of NDVI (Normalized Difference Vegetation Index) generated from multitemporal satellite images before and after forest fire, changed areas due to deforestation are extracted. In addition, a post-processing method using SRTM (Shuttle Radar Topographic Mission) data is involved in order to minimize the error of change detection. As a result of the experiment using KOMPSAT-2 and 3 images, it was confirmed that changed areas due to deforestation can be efficiently extracted.

A Pansharpening Algorithm of KOMPSAT-3A Satellite Imagery by Using Dilated Residual Convolutional Neural Network (팽창된 잔차 합성곱신경망을 이용한 KOMPSAT-3A 위성영상의 융합 기법)

  • Choi, Hoseong;Seo, Doochun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.961-973
    • /
    • 2020
  • In this manuscript, a new pansharpening model based on Convolutional Neural Network (CNN) was developed. Dilated convolution, which is one of the representative convolution technologies in CNN, was applied to the model by making it deep and complex to improve the performance of the deep learning architecture. Based on the dilated convolution, the residual network is used to enhance the efficiency of training process. In addition, we consider the spatial correlation coefficient in the loss function with traditional L1 norm. We experimented with Dilated Residual Networks (DRNet), which is applied to the structure using only a panchromatic (PAN) image and using both a PAN and multispectral (MS) image. In the experiments using KOMPSAT-3A, DRNet using both a PAN and MS image tended to overfit the spectral characteristics, and DRNet using only a PAN image showed a spatial resolution improvement over existing CNN-based models.

Software Development for Orthorectification of High Resolution Satellite Imagery using DEM (DEM을 이용한 고해상 위성영상의 정사보정 소프트웨어 개발)

  • Heo, Jae-We;Ryu, Young-Soo;Choi, Joon-Soo;Hahn, Kwang-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.35-38
    • /
    • 2009
  • 본 논문은 KOMPSAT-2, KOMPSAT-3 등과 같은 고해상도 위성영상의 정사보정 방법과 그에 따른 시험용 소프트웨어 개발을 목표로 한다. 정사보정은 위성 카메라의 자세나의 지표의 피복인위에 의하여 발생하는 인위를 제거하여 정사투영 된 특성을 갖는 영상을 구하는 과정을 말한다. 정사보정을 위해서는 위성 카메라의 기하학적인 특성과 지표면의 관계식을 나타내는 공선조건 식으로부터 지상기준점 및 수치표고모델을 통하여 구해진다. 본 논문에서는 고해상도 위성영상의 정사보정 방법을 구현하고, 실제 위성영상 데이터에 적용하여 구현된 소프트웨어의 성능을 평가한다.

  • PDF

Preliminary Design of Electric Interface It Software Protocol of MSC(Multi-Spectral Camera) on KOMPSAT-II (다목적실용위성 2호 고해상도 카메라 시스템의 전기적 인터페이스 및 소프트웨어 프로토콜 예비 설계)

  • 허행팔;용상순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.101-101
    • /
    • 2000
  • MSC(Multispectral Camera), which will be a unique payload on KOMPSAT-II, is designed to collect panchromatic and multi-spectral imagery with a ground sample distance of 1m and a swath width of 15km at 685km altitude in sun-synchronous orbit. The instrument is designed to have an orbit operation duty cycle of 20% over the mission life time of 3 years. MSC electronics consists of three main subsystems; PMU(Payload Management Unit), CEU(Camera Electronics Unit) and PDTS(Payload Data Transmission Subsystem). PMU performs all the interface between spacecraft and MSC, and manages all the other subsystems by sending commands to them and receiving telemetry from them with software protocol through RS-422 interface. CEU controls FPA(Focal Plane Assembly) which contains TDI(Timc Delay Integration) CCD(Charge Coupled Device) and its clock drivers. PMU provides a Master Clock to synchronize panchromatic and multispectral camera. PDTS performs compression, storage and encryption of image data and transmits them to the ground station through x-band.

  • PDF