• Title/Summary/Keyword: KOMPSAT-2 Imagery

Search Result 131, Processing Time 0.02 seconds

Calibration and Validation of Ocean Color Satellite Imagery (해양수색 위성자료의 검.보정)

  • ;B. G. Mitchell
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.431-436
    • /
    • 2001
  • Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.

  • PDF

Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification (산불 피해강도 분류를 위한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석)

  • Shin, Jung-Il;Seo, Won-Woo;Kim, Taejung;Woo, Choong-Shik;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1095-1106
    • /
    • 2019
  • Damage of forest fire should be investigated quickly and accurately for recovery, compensation and prevention of secondary disaster. Using remotely sensed data, burn severity is investigated based on the difference of reflectance or spectral indices before and after forest fire. Recently, the use of high resolution satellite and UAV imagery is increasing, but it is not easy to obtain an image before forest fire that cannot be predicted where and when. This study tried to analyze availability of high-resolution images and supervised classifiers on the burn severity classification. Two supervised classifiers were applied to the KOMPSAT-3A image and the UAV multispectral image acquired after the forest fire. The maximum likelihood (MLH) classifier use absolute value of spectral reflectance and the spectral angle mapper (SAM) classifier use pattern of spectra. As a result, in terms of spatial resolution, the classification accuracy of the UAV image was higher than that of the satellite image. However, both images shown very high classification accuracy, which means that they can be used for classification of burn severity. In terms of the classifier, the maximum likelihood method showed higher classification accuracy than the spectral angle mapper because some classes have similar spectral pattern although they have different absolute reflectance. Therefore, burn severity can be classified using the high resolution multispectral images after the fire, but an appropriate classifier should be selected to get high accuracy.

A Seamline Extraction Technique Considering the Characteristic of NDVI for High Resolution Satellite Image Mosaics (고해상도 위성영상 모자이크를 위한 NDVI 특성을 이용한 접합선 추출 기법)

  • Kim, Jiyoung;Chae, Taebyeong;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.395-408
    • /
    • 2015
  • High-resolution satellite image mosaics are becoming increasingly important in the field of remote sensing image analysis as an essential image processing to create a large image constructed from several smaller images. In this paper, we present an automatic seamline extraction technique and the procedure to generate a mosaic image by this technique. For more effective seamline extraction in the overlap region of adjacent images, an NDVI-based seamline extraction technique is developed, which takes advantage of the computational time and memory. The Normalized Difference Vegetation Index(NDVI) is an index of plant "greeness" or photosynthetic activity that is employed to extract the initial seamline. The NDVI can divide into manmade region and natural region. The cost image is obtained by the canny edge detector and the buffering technique is used to extract the ranging cost image. The seamline is extracted by applying the Dijkstra algorithm to a cost image generated through the labeling process of the extracted edge information. Histogram matching is also conducted to alleviate radiometric distortion between adjacent images acquired at different time. In the experimental results using the KOMPSAT-2/3 satellite imagery, it is confirmed that the proposed method greatly reduces the visual discontinuity caused by geometric difference of adjacent images and the computation time.

Performance Improvement Analysis of Building Extraction Deep Learning Model Based on UNet Using Transfer Learning at Different Learning Rates (전이학습을 이용한 UNet 기반 건물 추출 딥러닝 모델의 학습률에 따른 성능 향상 분석)

  • Chul-Soo Ye;Young-Man Ahn;Tae-Woong Baek;Kyung-Tae Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1111-1123
    • /
    • 2023
  • In recent times, semantic image segmentation methods using deep learning models have been widely used for monitoring changes in surface attributes using remote sensing imagery. To enhance the performance of various UNet-based deep learning models, including the prominent UNet model, it is imperative to have a sufficiently large training dataset. However, enlarging the training dataset not only escalates the hardware requirements for processing but also significantly increases the time required for training. To address these issues, transfer learning is used as an effective approach, enabling performance improvement of models even in the absence of massive training datasets. In this paper we present three transfer learning models, UNet-ResNet50, UNet-VGG19, and CBAM-DRUNet-VGG19, which are combined with the representative pretrained models of VGG19 model and ResNet50 model. We applied these models to building extraction tasks and analyzed the accuracy improvements resulting from the application of transfer learning. Considering the substantial impact of learning rate on the performance of deep learning models, we also analyzed performance variations of each model based on different learning rate settings. We employed three datasets, namely Kompsat-3A dataset, WHU dataset, and INRIA dataset for evaluating the performance of building extraction results. The average accuracy improvements for the three dataset types, in comparison to the UNet model, were 5.1% for the UNet-ResNet50 model, while both UNet-VGG19 and CBAM-DRUNet-VGG19 models achieved a 7.2% improvement.

A Study on Deep Learning Optimization by Land Cover Classification Item Using Satellite Imagery (위성영상을 활용한 토지피복 분류 항목별 딥러닝 최적화 연구)

  • Lee, Seong-Hyeok;Lee, Moung-jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1591-1604
    • /
    • 2020
  • This study is a study on classifying land cover by applying high-resolution satellite images to deep learning algorithms and verifying the performance of algorithms for each spatial object. For this, the Fully Convolutional Network-based algorithm was selected, and a dataset was constructed using Kompasat-3 satellite images, land cover maps, and forest maps. By applying the constructed data set to the algorithm, each optimal hyperparameter was calculated. Final classification was performed after hyperparameter optimization, and the overall accuracy of DeeplabV3+ was calculated the highest at 81.7%. However, when looking at the accuracy of each category, SegNet showed the best performance in roads and buildings, and U-Net showed the highest accuracy in hardwood trees and discussion items. In the case of Deeplab V3+, it performed better than the other two models in fields, facility cultivation, and grassland. Through the results, the limitations of applying one algorithm for land cover classification were confirmed, and if an appropriate algorithm for each spatial object is applied in the future, it is expected that high quality land cover classification results can be produced.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

Technology Trends and Future Prospects of Satellite-Based Photovoltaic Electricity Potential (위성기반 태양광 발전가능량 산출기술 개발 동향 및 향후 전망)

  • Han, Kyung-Soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.579-587
    • /
    • 2016
  • To obtain a stable energy supply and manage PhotoVoltaic (PV) systems efficiently, satellite imagery methods are being developed to estimate the solar PV potential. This study analyzed trends in the use of satellite imagery in solar PV and solar irradiation estimation technology. The imaging technology is used to produce solar energy resource maps. The trend analysis showed that the level of solar PV technology in Korea is 30% below that of advanced countries. It is impossible to raise such low-level technologies to the levels of advanced countries quickly. Intensive research and development is the only way to achieve the 80% technology level of advanced countries. The information produced in this process can contribute to the management of solar power plants. A valid technology development strategy would be to obtain effective data that can be used for fieldwork. Such data can be produced by estimating solar irradiation very accurately with several-hundred-meter resolution using Communication, Ocean, and Meteorological Satellites (COMS) and next-generation GEO-KOMPSAT 2A, developing core technologies for short- and medium-term irradiation prediction, and developing technologies for estimating the solar PV potential.

Monitoring of Shoreline Change using Satellite Imagery and Aerial Photograph : For the Jukbyeon, Uljin (위성영상 및 항공사진을 이용한 해안선 변화 모니터링 : 울진군 죽변면 연안을 대상으로)

  • Eom, Jin-Ah;Choi, Jong-Kuk;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.571-580
    • /
    • 2010
  • Coastal shoreline movement due to erosion and deposition is a major concern for coastal zone management. Shoreline is changed by nature factor or development of coastal. Change of shoreline is threatening marine environment and destroying. Therefore, we need monitoring of shoreline change with time series analysis for coastal zone management. In this study, we analyzed the shoreline change using airphotograph, LiDAR and satellite imagery from 1971 to 2009 in Uljin, Gyeongbuk, Korea. As a result, shoreline near of the nuclear power plant show linear pattern in 1971 and 1980, however the pattern of shoreline is changed after 2000. As a result of long-term monitoring, shoreline pattern near of the nuclear power plant is changed by erosion toward sea. The pattern of shoreline near of KORDI until 2003 is changed due to deposition toward sea, but the new pattern toward land is developed by erosion from 2003 to 2009. The shoreline is changed by many factors. However, we will guess that change of shoreline within study area is due to construction of nuclear power plant. In the future work, we need sedimentary and physical studies.

Calculation Method of Oil Slick Area on Sea Surface Using High-resolution Satellite Imagery: M/V Symphony Oil Spill Accident (고해상도 광학위성을 이용한 해상 유출유 면적 산출: 심포니호 기름유출 사고 사례)

  • Kim, Tae-Ho;Shin, Hye-Kyeong;Jang, So Yeong;Ryu, Joung-Mi;Kim, Pyeongjoong;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1773-1784
    • /
    • 2021
  • In order to minimize damage to oil spill accidents in the ocean, it is essential to collect a spilled area as soon as possible. Thus satellite-based remote sensing is a powerful source to detect oil spills in the ocean. With the recent rapid increase in the number of available satellites, it has become possible to generate a status report of marine oil spills soon after the accident. In this study, the oil spill area was calculated using various satellite images for the Symphony oil spill accident that occurred off the coast of Qingdao Port, China, on April 27, 2021. In particular, improving the accuracy of oil spill area determination was applied using high-resolution commercial satellite images with a spatial resolution of 2m. Sentinel-1, Sentinel-2, LANDSAT-8, GEO-KOMPSAT-2B (GOCI-II) and Skysat satellite images were collected from April 27 to May 13, but five images were available considering the weather conditions. The spilled oil had spread northeastward, bound for coastal region of China. This trend was confirmed in the Skysat image and also similar to the movement prediction of oil particles from the accident location. From this result, the look-alike patch observed in the north area from the Sentinel-1A (2021.05.01) image was discriminated as a false alarm. Through the survey period, the spilled oil area tends to increase linearly after the accident. This study showed that high-resolution optical satellites can be used to calculate more accurately the distribution area of spilled oil and contribute to establishing efficient response strategies for oil spill accidents.

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.