• Title/Summary/Keyword: KOMPSAT-2 Imagery

Search Result 131, Processing Time 0.022 seconds

Iterative Precision Geometric Correction for High-Resolution Satellite Images (고해상도 위성영상의 반복 정밀 기하보정)

  • Son, Jong-Hwan;Yoon, Wansang;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.431-447
    • /
    • 2021
  • Recently, the use of high-resolution satellites is increasing in many areas. In order to supply useful satellite images stably, it is necessary to establish automatic precision geometric correction technic. Geometric correction is the process that corrected geometric errors of satellite imagery based on the GCP (Ground Control Point), which is correspondence point between accurate ground coordinates and image coordinates. Therefore, in the automatic geometric correction process, it is the key to acquire high-quality GCPs automatically. In this paper, we proposed iterative precision geometry correction method. we constructed an image pyramid and repeatedly performed GCP chip matching, outlier detection, and precision sensor modeling in each layer of the image pyramid. Through this method, we were able to acquire high-quality GCPs automatically. we then improved the performance of geometric correction of high-resolution satellite images. To analyze the performance of the proposed method, we used KOMPSAT-3 and 3A Level 1R 8 scenes. As a result of the experiment, the proposed method showed the geometric correction accuracy of 1.5 pixels on average and a maximum of 2 pixels.

Multi-stage Image Restoration for High Resolution Panchromatic Imagery (고해상도 범색 영상을 위한 다중 단계 영상 복원)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.551-566
    • /
    • 2016
  • In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. The degradation results in noise and blurring which badly affect identification and extraction of useful information in image data. Especially, the degradation gives bad influence in the analysis of images collected over the scene with complicate surface structure such as urban area. This study proposes a multi-stage image restoration to improve the accuracy of detailed analysis for the images collected over the complicate scene. The proposed method assumes a Gaussian additive noise, Markov random field of spatial continuity, and blurring proportional to the distance between the pixels. Point-Jacobian Iteration Maximum A Posteriori (PJI-MAP) estimation is employed to restore a degraded image. The multi-stage process includes the image segmentation performing region merging after pixel-linking. A dissimilarity coefficient combining homogeneity and contrast is proposed for image segmentation. In this study, the proposed method was quantitatively evaluated using simulation data and was also applied to the two panchromatic images of super-high resolution: Dubaisat-2 data of 1m resolution from LA, USA and KOMPSAT3 data of 0.7 m resolution from Daejeon in the Korean peninsula. The experimental results imply that it can improve analytical accuracy in the application of remote sensing high resolution panchromatic imagery.

Image Restoration and Segmentation for PAN-sharpened High Multispectral Imagery (PAN-SHARPENED 고해상도 다중 분광 자료의 영상 복원과 분할)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1003-1017
    • /
    • 2017
  • Multispectral image data of high spatial resolution is required to obtain correct information on the ground surface. The multispectral image data has lower resolution compared to panchromatic data. PAN-sharpening fusion technique produces the multispectral data with higher resolution of panchromatic image. Recently the object-based approach is more applied to the high spatial resolution data than the conventional pixel-based one. For the object-based image analysis, it is necessary to perform image segmentation that produces the objects of pixel group. Image segmentation can be effectively achieved by the process merging step-by-step two neighboring regions in RAG (Regional Adjacency Graph). In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. This degradation increases variation of pixel values in same area, and results in deteriorating the accuracy of image segmentation. An iterative approach that reduces the difference of pixel values in two neighboring pixels of same area is employed to alleviate variation of pixel values in same area. The size of segmented regions is associated with the quality of image segmentation and is decided by a stopping rue in the merging process. In this study, the image restoration and segmentation was quantitatively evaluated using simulation data and was also applied to the three PAN-sharpened multispectral images of high resolution: Dubaisat-2 data of 1m panchromatic resolution from LA, USA and KOMPSAT3 data of 0.7m panchromatic resolution from Daejeon and Chungcheongnam-do in the Korean peninsula. The experimental results imply that the proposed method can improve analytical accuracy in the application of remote sensing high resolution PAN-sharpened multispectral imagery.

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning (딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석)

  • Nayoung Kim;Yerin Yun;Jaewan Choi;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.351-361
    • /
    • 2024
  • Satellite imagery contains various elements such as clouds, cloud shadows, and terrain shadows. Accurately identifying and eliminating these factors that complicate satellite image analysis is essential for maintaining the reliability of remote sensing imagery. For this reason, satellites such as Landsat-8, Sentinel-2, and Compact Advanced Satellite 500-1 (CAS500-1) provide Usable Data Masks(UDMs)with images as part of their Analysis Ready Data (ARD) product. Precise detection of clouds and their shadows is crucial for the accurate construction of these UDMs. Existing cloud and their shadow detection methods are categorized into threshold-based methods and Artificial Intelligence (AI)-based methods. Recently, AI-based methods, particularly deep learning networks, have been preferred due to their advantage in handling large datasets. This study aims to analyze the applicability of constructing UDMs for high-resolution satellite images through deep learning-based cloud and their shadow detection using open-source datasets. To validate the performance of the deep learning network, we compared the detection results generated by the network with pre-existing UDMs from Landsat-8, Sentinel-2, and CAS500-1 satellite images. The results demonstrated that high accuracy in the detection outcomes produced by the deep learning network. Additionally, we applied the network to detect cloud and their shadow in KOMPSAT-3/3A images, which do not provide UDMs. The experiment confirmed that the deep learning network effectively detected cloud and their shadow in high-resolution satellite images. Through this, we could demonstrate the applicability that UDM data for high-resolution satellite imagery can be constructed using the deep learning network.

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

Change Detection of Damaged Area and Burn Severity due to Heat Damage from Gangwon Large Fire Area in 2019 (2019년 강원도 대형산불지역의 열해 피해로 인한 피해강도 변화 탐색)

  • Won, Myoungsoo;Jang, Keunchang;Yoon, Sukhee;Lee, HoonTaek
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1083-1093
    • /
    • 2019
  • The purpose of this study is to detect the burned area change by direct burning of tree canopies and post-fire mortality of trees via analyzing satellite imageries from the Korea multi-purpose satellite-2 and -3 (KOMPSAT-2 and -3) for two large-fires over the Goseong-Sokcho and Gangneung-Donghae regions in April 2019. For each case, the burned area was compared between two dates: the day when the fire occurred and 15-18 days after it. As the results, within these two dates, there was no substantial difference in burned area of sites whose severities were marked as "Extreme", but sites with "High" and "Low" severities showed significant differences in burned area between the two dates. These differences were resulted from the lagged post-fire browning of canopies which was detected by images from in-situ observation,satellite, and the unmanned aerial vehicle. The post-fire browning started after 3-4 days and became apparent after 10-15 days. This study offers information about the timing to quantify the burned area by large fire and about the mechanism of post-fire mortality. Also, the findings can support policy makers in planning the restoration of the damaged areas.