• Title/Summary/Keyword: KOMPSAT I

Search Result 64, Processing Time 0.016 seconds

Design & Implementation of Flight Software Satellite Simulator based on Parallel Processing (병렬처리 기반의 위성 탑재소프트웨어 시뮬레이터 설계 및 개발)

  • Choi, Jong-Wook;Nam, Byeong-Gyu
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.80-86
    • /
    • 2012
  • The software-based satellite simulator has been developed from the start of the project to resolve the restriction and limitation of using hardware-based software development platform. It enables the development of flight software to be performed continuously since initial phase. The satellite simulator emulates the on-board computer, I/O modules, electronics and payloads, and it can be easily adapted and changed on hardware configuration change. It supports the debugging and test facilities for software engineers to develop flight software. Also the flight software can be loaded without any modification and can be executed as faster than real-time. This paper presents the architecture and design of software-based GEO satellite simulator which has hot-standby redundancy mechanism, and flight software development and test under this environment.

Performance Estimation of Receiving Data Parket of TT&C System on the Pass Time of LEO Satellite (저궤도 위성의 통과시간에서 관제 시스템의 수신 데이터 패킷 성능 예측)

  • 장대익;김대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1149-1155
    • /
    • 1999
  • LEO(Low altitude Earth Orbit) Satellite systems have been utilized in the field of earth and scientific observation (cartography mission, ocean color monitoring, bioglogical coeanography, space environments observation by space physics sensor, and meteorological observation, atmospheric observation etc.), and the field of military (military communications and secret information, enemy reconnaissance etc.), and recently been developing in the field of mobile satellite commnication of GMPCS for commercial utilization. In Korea, KOMPSAT I satellite and ground system are been developing and planed to be lunched on October 1999 In this paper, the link budge of the TT&C system for LEO satellite is described and the relations between elevation angle and pass time of LEO satellite are calculated according to satellite moving. And the packet error rates of receiving data are derived three packet error rates(PER) of real-time(RT) mode, playback(PB) mode, and real-time and range tone(RT+RNG) mode are estimated according to pass time of satellite. The results of PER are the best at real-time and the worst at real-time mode and range mode at the all pass time of satellite. The average error free packet(EFP)s of real-time mode, playback mode, and real-time and range tone for the pass time of satellite are obtained as 99.999999%, 99.999912%, 99.995945% respectively. Therefore, transmission sequence of telemetry data are determined such as PER sequence according to pass time, namely, real-time, playback, and real-time and range mode.

  • PDF

Research on Analytical Technique for Satellite Observstion of the Arctic Sea Ice (극지 해빙 위성관측을 위한 분석 기술 개발)

  • Kim, Hyun-cheol;Han, Hyangsun;Hyun, Chang-Uk;Chi, Junhwa;Son, Young-sun;Lee, Sungjae
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1283-1298
    • /
    • 2018
  • KOPRI(Korea Polar Research Institute) have researhed Arctic sea ice by using satellite remote sensing data since 2017 as a mission of KOPRI. The title of the reseach is "Development of Satellite Observation and Analysis for Arctc sea-ice". This project has three major aims; 1) development of prototype satellite data archive/manage system for Arctic sea ice monitoring, 2) development of sea ice remote sensing data processing and analysis technique, and 3) development of international satellite observing network for Arcitc. This reseach will give us that 1) deveolpment of sea ice observing system for northern sea route, 2) development of optimal remote sensing data processing technique for sea ice and selected satelite sensors, 3) development of international satellite onbservation network. I hope that this letter of introducton KOPRI satellite program for Arctic will help to understand Arctic remote sensing and will introduce you to step into the Arctic remote sensing, which Iis like a blue ocean of remote sensing.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.