• Title/Summary/Keyword: KOMPSAT I

Search Result 64, Processing Time 0.024 seconds

INITIAL GEOMETRIC ACCURACY OF KOMPSAT-2 HIGH RESOLUTION IMAGE

  • Seo, Doo-Chun;Lim, Hyo-Suk;Shin, Ji-Hyeon;Kim, Moon-Gyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.780-783
    • /
    • 2006
  • The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.

  • PDF

Development of TPF Generation SIW for KOMPSAT-2 X-Band Antenna Motion Control

  • Kang C. H.;Park D. J.;Seo S. B.;Koo I. H.;Ahn S. I.;Kim E. K.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.485-488
    • /
    • 2005
  • The 2nd KOrea Multi-Purpose Satellite (KOMPSAT -2) has been developed by Korea Aerospace Research Institute (KARI) since 2000. Multi Spectral Camera (MSC) is the payload for KOMPSAT -2, which will provide the observation imagery around Korean peninsula with high resolution. KOMPSAT-2 has adopted X-band Tracking System (XTS) for transmitting earth observation data to ground station. For this, data which describes and controls the pre-defined motion of each on-board X-Band antenna in XTS, must be transmitted to the spacecraft as S-Band command and it is called as Tracking Parameter Files (TPF). In this paper, the result of the development of TPF Generation S/W for KOMPSAT-2 X-Band Antenna Motion Control.

  • PDF

PRELIMINARY STUDY ON THE ABRUPT DENSITY ENHANCEMENT IN LOW LATITUDE REGION DETECTED BY KOMPSAT-I (KOMPSAT-I으로 관측한 저위도 이온층 밀도 급상승 현상에 대한 연구)

  • 박재홍;이재진;이은상;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • SPS(Space Physics Sensor) onboard the KOMPSAT-I, which was launched at 1999, had transmitted ionospheric plasma density and electron temperature during the solar maximum from June 2000 to August 2001, SPS IMS onboard KOMPSAT-I occasionally detected abrupt plasma density enhancement in low-latitude region, in which the plasma density abruptly increases in a narrow region. Statistical analysis of the data obtained during the entire operational period shows that the occurrence probability of these events has its peak value at the Atlantic region and at the Hawaiian region where the geomagnetic field strength is weak. And the occurrence frequency has no correlation with Dst index or F10.7 index. The correlation between plasma density and the electron temperature shows a wide variety, but the anti-correlated cases are dominant.

Command/Telemetry System of KOMPSAT-I (아리랑 위성의 Command/Telemetry 시스템)

  • 강수연;이종인;천이진;정창호;김진철;백홍렬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.662-664
    • /
    • 1998
  • 본 논문에서는 다목적 실용위성인 아리랑위성(KOMPSAT-I)에서 지상과의통신을 위해 사용하는 CCSDS(Consultative Committee for Space Data Systems)표준 Command/Telemetry(CMD/TLM)시스템과 KOMPSAT-I의 목적에 맞게 이를 적용한 CMD/TLM 시스템을 소개한다. 현재 한국항공우주 연구소는 Observer 회원 자격으로 CCSDS 에 가입되어 있으며 국내 위성 개발에서 CMD/TLM 시스템에 CCSDS프로토콜을 사용한 것은 처음이다.

  • PDF

MTF analysis of KOMPSAT I from on-orbit image

  • Jang Hong-Sul;Jung Dae-Jun;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.604-607
    • /
    • 2004
  • The on-orbit MTF for the electro-optical camera (EOC) of the KOMPSAT I was calculated from sampled image of edge target. The image derived MTF values are smaller than ground measurement values but meet original requirements of EOC. The MTF from MTF compensated image was larger than and ground measurement result.

  • PDF

Ranging Data Accuracy in K13 S-Band Antenna

  • Ahn Sang-il;Park Dong-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.464-466
    • /
    • 2004
  • Ranging and 2-way Doppler measurements are very essential source for orbit determination in LEOP (Launch and Early Operation). This paper shows ranging system features of 13M TT &C antenna and test results recently acquired with KOMPSAT-l. Ranging and 2-way Doppler measurements were compared with KOMPSAT-I GPS telemetry data. Through comparison, it was found that constant and accurate ranging measurements are available with 13M antenna system. Ranging and Doppler measurement function is expected to be used for KOMPSAT-1 and KOMPSAT-2.

  • PDF

Aircraft Velocity and Altitude Estimation through Time Offset Calculation of KOMPSAT-3 Satellite (KOMPSAT-3 위성의 Time Offset 계산을 통한 항공기 속력 및 고도 추정)

  • Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Song, Ahram;Lee, Won Hee
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1879-1887
    • /
    • 2022
  • In this study, a method of estimating the velocity and altitude of aircrafts photographed in a KOMPSAT-3 satellite was proposed. In the proposed method, parallax effect, which is a time offset between bands due to the photographing method of the KOMPSAT-3 satellite, the structure of the sensor, and the movement of the satellite's orbit, was calculated, and in this process, trucks running on the highway were used. In addition, the actual direction and the direction by parallax effect of the aircraft were calculated using the coordinates of the aircraft in the image, and the attitude information of the KOMPSAT-3 satellite was calculated using metadata to estimate the velocity and altitude of the aircraft. The estimated value through the proposed method was compared with the actual value, automatic dependent surveillance-broadcast (ADS-B), and the error rate was calculated here. As a result, it was confirmed that the velocity and altitude error rate of large aircraft (I1, I3, S2) were lower than that of light aircraft (I2, S2), and the estimated velocity and altitude were relatively high in large aircraft using the proposed method.

Surface Observation Probability System of KOMPSAT-3 (다목적실용위성 3호의 지상관측확률에 관한 연구)

  • Park, Myeong-Suk;Heo, Chang-Hoe;Kim, Yeong-Mi;Kim, Eung-Hyeon;Kim, Gyu-Seon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 2006
  • The surface observation probability system (SOPS) of the Korea Multi-Purpose Satellite (KOMPSAT) has been developed based on the climatological distribution of cloud coverage and the expected passage of satellite orbit. While the optical camera loaded on KOMPSAT series has been operated with the purpose of observing earth's surface, it cannot see the surface when an obstacle (i.e., cloud) exists between them. In the present study, cloud information of International Satellite Cloud Climatology Project incorporates into high resolution grid of the KOMPSAT-3 orbit. The characteristics of the KOMPSAT SOPS are discussed.

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

Orbit Analysis for KOMPSAT-2 During LEOP and Mission Lifetime (아리랑위성 2호 초기운용 및 임무기간 중 궤도 분석)

  • Kim, Hae-Dong;Jung, Ok-Chul;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.914-924
    • /
    • 2010
  • In this paper, results on the orbit analysis for the KOMPSAT-2 satellite using a real orbit data during the LEOP and normal mission lifetime are presented. In particular, the preparation and performance of an orbit operations during the LEOP is emphasized and the effects of space environments (i.e., Solar activity) on orbit evolutions are investigated comparing to those of the KOMPSAT-1 satellite. The summarized results in this paper would be an important reference to improve the stability and effectiveness of satellite operations during the LEOP and normal mission lifetime in case of LEO satellites such as successors of KOMPSAT-2 (i.e., KOMPSAT-3, KOMPSAT-3A, KOMPSAT-5).