• Title/Summary/Keyword: KOH/NaOH

Search Result 152, Processing Time 0.026 seconds

Evaluation of the Flowability and Compressive Strength of Alkali-Activated Blast Slag Mortar (고로슬래그 알칼리 활성 모르타르의 유동성 및 압축강도 평가)

  • Ryu, Gum-Sung;Kang, Hyun-Jin;Koh, Kyung-Taek;Lee, Jang-Hwa;Kang, Su-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.613-616
    • /
    • 2008
  • Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash and blast slag, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of CO$_2$ gas. In this study, we investigated the influence of the workability and compressive strength of mortar on water reducing agent, alkaline activator and curing method in oder to develop cementless blast slag based alkali-activated mortar. In view of the results, we found out that the flowability of mortar was lowered as increasing to mole concentration of NaOH, but not large the loss of flowability to 9M NaOH, most of water reducing agent was not effect. The compressive strength was improved as increasing to mole concentration of NaOH, was the most effect in 9M NaOH. The curing temperature and curing conditions on compressive strength of blast slag based alkali-activated mortar didn't influence.

  • PDF

Biodiesel Production from Lard & Beef Tallow Using Various Catalyst (돈지 및 우지 추출오일의 촉매 종류에 따른 바이오디젤 생산 특성)

  • Kim, Deogkeun;Lee, Youngjae;Park, Jiyeon;Park, Soonchul;Lee, Jinsuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.177.1-177.1
    • /
    • 2011
  • 국내 바이오디젤의 원료로 사용되는 식물성 오일은 거의 전량이 수입된 것으로 원료를 자급화 하기 위한 방안으로 국내 동물성 폐자원을 이용한 바이오디젤 연구가 활발히 진행되고 있다. 본 연구에서는 전자레인지를 이용해 동물성 폐자원인 폐돈지 및 폐우지로부터 오일을 추출 후 물성을 분석하고 전이에스테르화 반응을 진행하였으며 바이오디젤 제조 특성을 조사하고자 하였다. 전이에스테르화 반응에 사용되는 염기 촉매를 몇가지 선정하여 각각의 촉매에 따른 바이오디젤의 반응특성을 메탄올 양을 변화시키며 조사 실험하였다. 기존에 사용된 바이오디젤 제조 촉매는 KOH를 주로 사용하였으며 본 연구에서는 KOH, NaOH, $NaOCH_3$를 촉매로 사용하여 오일질량 대비 0.8~1.2%의 촉매를 사용하였으며 메탄올의 양은 오일 몰수 대비 6:1~12:1의 비율로 사용하여 반응시간에 따른 반응특성과 제조 바이오디젤의 물성을 분석해 각 촉매에 따른 바이오디젤 생산 특성을 비교분석하였다.

  • PDF

Influence of Alkaline-activator Content on the Compressive Strength of Aluminosilicate-based Geopolymer (알루미노 실리케이트계 지오폴리머의 압축강도에 미치는 알카리 활성화제의 영향)

  • Kim, Jin-Tae;Seo, Dong-Seok;Kim, Gab-Joong;Lee, Jong-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.216-222
    • /
    • 2010
  • Portland cement has been restricted in applications to ecological area because of its environmental harmfulness and the $CO_2$ emission during a production process. Geopolymer materials attract some attention as an inorganic binder due to their superior mechanical and eco-friendly properties. In this study, geopolymer-based cement was prepared by using aluminosilicate minerals (flyash, meta-kaolin) with alkaline-activators and its compressive strength with concentration of alkaline-activators was investigated. Aluminosilicate-based geopolymers were obtained by mixing aluminosilicate minerals, alkaline solution (NaOH or KOH with different concentration) and water-glass under the vigorous stirring for 20 min. Compressive strength after curing at $30^{\circ}C$ for 3 days increased with the concentration of alkaline-activator due to the enhanced polymerization of the aluminosilicate materials and dense microstructure. Aluminosilicate-based geopolymer cement using KOH as an alkaline-activator showed high compressive strength compared with NaOH activator. In addition, geopolymer cement using fly-ash as a raw material showed higher compressive strength than that of meta-kaolin.

Electrochemical characteristics of active carbon prepared by chemical activation for anode of lithium ion battery (이차전지 음극용 화학적 활성화법으로 제조된 활성탄의 전기화학적 특성)

  • Lee, Ho-Yong;Kim, Tae-Yeong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.480-487
    • /
    • 2015
  • In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of $1900{\sim}2500m^2/g$ and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.

Characteristics of Alpha Particle Track on Cellulose Nitrate Film (Cellulose Nitrate의 알파입자비적특성(粒子飛跡特性))

  • Do, Jin-Yeol;Jun, Jae-Shik;Hwang, Sun-Tae
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.61-66
    • /
    • 1984
  • A study on the characteristics of ${\alpha}$-particle track on cellulose nitrate film was carried out with a particular emphasis on the dependence of track diameter upon chemical etching condition. The track diameters etched in KOH solution appeared to be, on average, three times larger than those etched in NaOH under the same etching condition. The relationship between the track diameters and both etching time and the energy of incident ${\alpha}$-particles was also investigated. It is shown that the particle fluence rate is fairly independent of etching time as far as the condition of irradiation remains unchanged.

  • PDF

Synthesis of Photoconductive N-unsaturated Alkylcarbazole Derivatives (광전도성 N-불포화알킬카르바졸 유도체의 합성)

  • Jung, Eun-Sil;Cho, Eul-Hoon;Chung, Pyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.548-553
    • /
    • 1998
  • The N-unsaturated alkylcarbazole derivatives were synthesized by the nucleophilic unimolucular substitution reaction ($S_N1$) of carbazole with unsaturated alkyl chloride. These reactions between carbazole and unsaturated alkyl chloride were conducted in dimethyl sulfoxide (DMSO) containing alkali (NaOH or KOH) at room temperature for 4 hrs under nitrogen atmosphere. The mole ratios of carbazole, alkali and unsaturated alkyl chloride were 1:6:1, respectively. All of the compounds of starting materials and reaction products were characterized by CHN analysis, $^1H$-NMR and FR-IR spectroscopy.

  • PDF

Effects of Treatment of Cellulase and Alkali on Physical Properties and Dyeability of Ramie/Man-Made Fiber Mixture Fabrics (셀룰라아제와 알칼리 처리에 의한 저마/인조섬유 교직물의 물성과 염색성 변화)

  • 김순심;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.5
    • /
    • pp.891-900
    • /
    • 2001
  • The purpose of this study were to evaluate the physical properties and dyeability of cellulase and alkali(NaOH, KOH) treated ramie/man-made fiber mixture fabrics. The mixture fabrics were plain weave made by rayon and polyester fiber as warp yarn, and ramie as weft yarn. The crease resistance, drape, tensile strength, and water absorbancy were measured for test fabrics. The K/S value of dyed fabrics were calculated using color difference meter. Also colorfastness to washing and sunlight of dyed fabrics were evaluated. The results obtained from this study were as follows: Thickness and weight per unit area of alkali treated two mixture fabrics(rayon/ramie, polyester/ramie) increased compared to those of untreated fabrics, but cellulase treated fabrics did not changed a little. And alkali treated rayon/ramie mixture fabrics showed more change than polyester/ramie mixture fabrics on the thickness and weight. Tensile strength and water absorbancy of cellulase treated fabrics decreased compared to those of untreated, but crease resistance increased. Crease resistance, tensile strength(warp direction), water absorbancy and drape of NaOH treated rayon/ramie mixture fabrics decreased compared to those of untreated, but tensile strength(weft direction) increased. Water absorbancy and drape of NaOH treated polyester/ramie mixture fabrics decreased compared to those of untreated, but crease resistance and tensile strength(weft direction) increased. Tensile strength of KOH treated two mixture fabrics increased compared to that of untreated, but water absorbancy and drape decreased. Total hand of cellulase and alkali treated rayon/ramie mixture fabrics was improved compared to untreated. Dyeability of treated mixture fabrics was increased compared to untreated.

  • PDF

Production of Biodiesel from High Acid Value Oils using Amberlyst-15 (Amberlyst-15를 이용한 산가가 높은 유지로부터 바이오디젤의 생산)

  • Sim, Yeon-Ju;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.483-489
    • /
    • 2010
  • Biodiesel has attracted great attention as an alternative renewable energy source for the replacement of petroleumbased diesel fuel, yet its high production cost due to expensive oil feedstock remainsas the major economical obstacle. In this study, we investigated catalysts and reaction conditions for the acid catalyzed pre-conversion of free fatty acid (FFA) to fatty acid methyl ester (FAME) in cheap low-grade oils of high acid value. The NaOH base catalyzed reaction of vegetable oil of the initial acid value of 2 mg KOH/g led to a high FAME conversion above 95.4%, but the conversion abruptly decreased at higher initial acid values. This base catalyzed reaction was practically ineffective displaying the FAME conversion below 15% even at the initial acid value of 10 mg KOH/g by the severe saponification side reaction. Among the various catalysts studied for the pre-conversion of FFA to FAME, Amberlyst-15 was the most effective in reducing the acid value, and the optimum reaction condition identified was $65^{\circ}C$ with oil to methanol ratio of 1:3 and catalyst concentration of 15% (w/w). As the results, great enhancements in the overall biodiesel conversion were achievable via a consecutive reaction of the acid catalyzed FFA pre-conversion to FAME under the optimal condition obtained with Amberlyst-15 followed by the NaOH base catalyzed reaction, far above the extent which was obtainable by the single NaOH catalyzed reaction.

Influences of Various Electrolytes on the Low-Temperature Characteristics of Ni-MH Secondary Battery (Ni-MH 2차 전지의 저온특성에 미치는 전해액의 영향)

  • Park, Chae-Gyu;Shim, Jong-Su;Jang, Min-Ho;Park, Choong-Nyeon;Choi, Jeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.284-291
    • /
    • 2007
  • The Ni-MH batteries for HEV and industry are normally placed in outdoor, consequently causing an too weak discharge power problem due to a cold weather specially in winter time. In order to improve the low temperature performances of the Ni-MH battery for HEV and industrial uses, it has been investigated the low temperature discharge characteristics of Ni-MH battery with various electrolytes at $-18^{\circ}C$. The summary of experimental results are as follows. The low temperature characteristics depended strongly on the characteristics of electrolytes. When the concentration of the electrolytes were too high or too low the low temperature performance was poor. The best electrolyte was composed of KOH 6.2M+LiOH 1.2M. An addition of RbOH or CsOH to electrolyte improved the low temperature performance. The best total concentration of electrolyte composed of KOH, NaOH and LiOH was about 7M.

A Study on Acid Recovering Process by Neutralization and Water-Splitting Electrodialysis (WSED) (중화법과 전기투석에 의한 산회수 공정연구)

  • Lee, Hong Joo;Moon, Seung-Hyeon;Park, Sung-Kook;Chun, Hee-Dong
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.74-86
    • /
    • 1997
  • Recently the treatment of industrial wastes by membrane processes has drawn much attention due to increasing demands for clean technology. In the process investigated in this study, metal species in the acidic wastes are precipitated as metal hydroxide forms in a neutralization tank, and acid and base solutions are regenerated by water-splitting electrodialysis(WSED) to be reused in the process. Material balances of the processes for treating pickle liquor and mixed wastewater were calculated to explain conceptual design of the process. Experiments for neutralization precipitation with KOH and NaOH for mixed wastewater were carried out to precipitate metal hydroxide and to recover salt solution as supernatant. Also WSED of the salt solutions producing acid and base was tested in 2 or 3 compartment stacks using KCl and NaCl to investigate the effects of stack configurations on the WSED performance.

  • PDF