• Title/Summary/Keyword: KNN알고리즘

Search Result 74, Processing Time 0.026 seconds

Optimized KNN/IFCM Algorithm for Efficient Indoor Location (효율적인 실내 측위를 위한 최적화된 KNN/IFCM 알고리즘)

  • Lee, Jang-Jae;Song, Lick-Ho;Kim, Jong-Hwa;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.125-133
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So intuitive fuzzy c-means(IFCM) clustering algorithm is applied to improve KNN, which is the KNN/IFCM hybrid algorithm presented in this paper. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of IFCM based on signal to noise ratio(SNR). Then, the k RPs are classified into different clusters through IFCM based on SNR. Experimental results indicate that the proposed KNN/IFCM hybrid algorithm generally outperforms KNN, KNN/FCM, KNN/PFCM algorithm when the locations error is less than 2m.

KNN / ANN Hybrid algorithm Using indoor positioning Method (KNN/ANN Hybrid 알고리즘을 활용한 실내위치 측위 기법)

  • Kim, Beom-mu;Thapa, Prakash;Paudel, Prebesh;Jeong, Min-A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1205-1207
    • /
    • 2015
  • Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 ANN 군집화를 적용한 KNN과 ANN을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 ANN에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/ANN 알고리즘이 KNN 알고리즘보다 성능이 우수하다.

Research on Disease Prediction and Health Supplement Recommendation Algorithm Based on KNN Algorithm (KNN 알고리즘을 기반으로 하는 질병 예측 및 건강기능식품 추천 알고리즘에 관한 연구)

  • Yong-Ju Chu
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.49-57
    • /
    • 2024
  • In this paper, we propose an algorithm that can recommend personalized health functional foods considering diseases due to the high interest in health functional foods and the development of machine learning as society enters an aging phase. By applying the KNN algorithm, we presented a foundational framework for a platform for personalized health functional food recommendations through disease analysis, matching techniques of publicly available health functional food information, and national public data. To ensure reliable matching between diseases and health functional foods, we analyzed correlations, assessed the appropriateness and accuracy of variables for enhancing the KNN algorithm, and derived improvement directions for the proposed system through the improvement of learning models and information to be disclosed in the future.

KNN/ANN Hybrid Location Determination Algorithm for Indoor Location Base Service (실내 위치기반서비스를 위한 KNN/ANN Hybrid 측위 결정 알고리즘)

  • Lee, Jang-Jae;Jung, Min-A;Lee, Seong-Ro;Song, Iick-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2011
  • As fingerprinting method, k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighbors k and positions of reference points(RPs). So artificial neural network(ANN) clustering algorithm is applied to improve KNN, which is the KNN/ANN hybrid algorithm presented in this paper. For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. In the proposed algorithm, through KNN, k RPs are firstly chosen as the data samples of ANN based on SNR. Then, the k RPs are classified into different clusters through ANN based on SNR. Experimental results indicate that the proposed KNN/ANN hybrid algorithm generally outperforms KNN algorithm when the locations error is less than 2m.

KNN/PFCM Hybrid Algorithm for Indoor Location Determination in WLAN (WLAN 실내 측위 결정을 위한 KNN/PFCM Hybrid 알고리즘)

  • Lee, Jang-Jae;Jung, Min-A;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.146-153
    • /
    • 2010
  • For the indoor location, wireless fingerprinting is most favorable because fingerprinting is most accurate among the technique for wireless network based indoor location which does not require any special equipments dedicated for positioning. As fingerprinting method,k-nearest neighbor(KNN) has been widely applied for indoor location in wireless location area networks(WLAN), but its performance is sensitive to number of neighborsk and positions of reference points(RPs). So possibilistic fuzzy c-means(PFCM) clustering algorithm is applied to improve KNN, which is the KNN/PFCM hybrid algorithm presented in this paper. In the proposed algorithm, through KNN,k RPs are firstly chosen as the data samples of PFCM based on signal to noise ratio(SNR). Then, thek RPs are classified into different clusters through PFCM based on SNR. Experimental results indicate that the proposed KNN/PFCM hybrid algorithm generally outperforms KNN and KNN/FCM algorithm when the locations error is less than 2m.

KNN/PFCM Hybrid Algorithm for Indoor Location Determination in WLAN (WLAN 실내 측위 결정을 위한 KNN/PFCM Hybrid 알고리즘)

  • Kim, Kyoung-Soung;Lee, Jang-Jae;Oh, Il-Whan;Lee, Yeonwoo;Jung, Min-A;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1708-1710
    • /
    • 2010
  • 무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 Fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP를 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/PFCM 알고리즘이 KNN과 KNN/FCM 알고리즘보다 성능이 우수하다.

Interference Elimination Method of Ultrasonic Sensors Using K-Nearest Neighbor Algorithm (KNN 알고리즘을 활용한 초음파 센서 간 간섭 제거 기법)

  • Im, Hyungchul;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.169-175
    • /
    • 2022
  • This paper introduces an interference elimination method using k-nearest neighbor (KNN) algorithm for precise distance estimation by reducing interference between ultrasonic sensors. Conventional methods compare current distance measurement result with previous distance measurement results. If the difference exceeds some thresholds, conventional methods recognize them as interference and exclude them, but they often suffer from imprecise distance prediction. KNN algorithm classifies input values measured by multiple ultrasonic sensors and predicts high accuracy outputs. Experiments of distance measurements are conducted where interference frequently occurs by multiple ultrasound sensors of same type, and the results show that KNN algorithm significantly reduce distance prediction errors. Also the results show that the prediction performance of KNN algorithm is superior to conventional voting methods.

Optimized KNN/SVM Algorithm for Efficent Indoor Location (효율적인 실내 측위를 위한 KNN/SVM 알고리즘)

  • Kang, Il-Woo;Sharma, Ronesh;Jeon, Seong-Min;Park, Sun;Lee, Seong-Ho;Na, Young-Hwa;Bae, Jinsoo;Jung, Min-A;Lee, Yeonwoo;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.602-605
    • /
    • 2011
  • 현재 측위에 대한 측정 대상이 점점 작아지면서, 그에 따른 정확도 까지 높아지고 있다. 실내 측위에 관한 기술은 대표적으로 단말기의 수신신호의 세기방식인 RSS(Received Signal Strength), 수신신호의 도달시간 방식 TOA(Time of Arrival), 수신 신호의 도달 시간차 방식 TDOA(Time Difference of Arrival), 수신신호의 입사각 방식인 AOA(Angle of Arrival) 등 여러 가지 기술이 활발히 진행되고 있다. 본 논문은 특수 장비를 사용하지 않고, 무선 네트워크 기반의 실내 측위 중에 정확도가 높은 Fingerprinting 방법을 택하였다. WLAN 기반 실내측위에 가장 많이 사용되는 KNN은 k개의 이웃수와 RP의 수에 따라 민감하다. 본 논문에서는 KNN 성능을 향상 시키기 위해 SVM 이용하여 SNR 데이터를 군집화를 적용한 KNN과 SVM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP를 선택한 후 선택된 RP의 신호잡음비를 SVM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과 위치 오차가 2m이내에 KNN/SVM 혼합 알고리즘이 KNN 알고리즘보다 성능이 우수하다.

A K-Nearest Neighbor Search Algorithm for DGR-Tree (DGR-Tree를 위한 KNN 검색 알고리즘)

  • Lee, Deuk-Woo;Kang, Hong-Koo;Han, Ki-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.799-800
    • /
    • 2009
  • 유비쿼터스 컴퓨팅 환경에서의 LBS에서는 점차 대용량화 및 밀집화 경향을 보이는 POI에 대한 빠른 KNN 검색이 중요하다. 따라서 본 논문에서는 기존의 DGR-Tree를 위해서 POI에 대한 빠른 KNN 검색을 위한 KNN 검색 알고리즘을 제시하고, 또한 성능 평가를 통해 그 우수성을 입증한다.

Pattern Recognition System Combining KNN rules and New Feature Weighting algorithm (KNN 규칙과 새로운 특징 가중치 알고리즘을 결합한 패턴 인식 시스템)

  • Lee Hee-Sung;Kim Euntai;Kim Dongyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.4 s.304
    • /
    • pp.43-50
    • /
    • 2005
  • This paper proposes a new pattern recognition system combining the new adaptive feature weighting based on the genetic algorithm and the modified KNN(K Nearest-Neighbor) rules. The new feature weighting proposed herein avoids the overfitting and finds the Proper feature weighting value by determining the middle value of weights using GA. New GA operators are introduced to obtain the high performance of the system. Moreover, a class dependent feature weighting strategy is employed. Whilst the classical methods use the same feature space for all classes, the Proposed method uses a different feature space for each class. The KNN rule is modified to estimate the class of test pattern using adaptive feature space. Experiments were performed with the unconstrained handwritten numeral database of Concordia University in Canada to show the performance of the proposed method.