• Title/Summary/Keyword: KNEE ANGLE

Search Result 591, Processing Time 0.025 seconds

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

Effects of Muscle Activity and Muscle Strength According to Verbal Command Volume in Isokinetic and Isometric Exercise of Quadriceps (넙다리네갈래근의 등속성 및 등척성 운동에서 구두명령 크기에 따른 근 활성도와 근력에 미치는 영향)

  • Lee, Hyoungsoo;Kim, Yoonhwan
    • Archives of Orthopedic and Sports Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effects of muscle activity and muscle strength according to verbal command volume during isokinetic and isometric quadricep exercises. Methods: To measure muscle activity and muscle strength, surface electrodes were attached to the participants, as they sat on a Biodex chair. The isometric exercise was performed three times, with maximum exercise at $30^{\circ}$ bending angle, based on a maximum extension state of the knee at $0^{\circ}$. The average holding time was unified to three seconds. In addition, the isokinetic exercise was performed three times, at $60^{\circ}/sec$. The verbal command ranged between 0∾60 dB and 0∾75 dB. Muscle activity was measured using surface electromyography (4D-MT, Relive, Gimhae, Korea). The Biodex System 4 was used to measure the isometric and isokinetic strength of the nodal line, and 4D-MT was used to measure muscle activity. Results: There were significant improvements in the maximal and relative muscle strengths, when the 0∾ 60 dB and 0∾75 dB verbal commands were applied with isokinetic extension/flexion (p<.05). The isokinetic exercise (0∾75 dB) group showed a significant difference in the vastus medialis oblique muscle activity change (p<.05), while the isometric exercise (0∾75 dB) group showed a significant difference in the rectus femoris muscle activity change (p<.05). Conclusions: Our results reveal that verbal commands effectively improve muscle activity and muscle strength during isokinetic and isometric quadricep exercises.

The Evaluation of the Swing and Aerial Motion of Kovacs on Horizontal Bar (국내 철봉 선수들의 Kovacs의 흔들기 및 체공 동작에 대한 평가)

  • Lim, Kyu-Chan
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • Objective: The aim of this study was to investigate the swing and aerial motion of Kovacs, and evaluate the skill level of Kovacs by Korean adult players on horizontal bar. Method: The subjects for this study were 6 male top athletes participated in the 46th National Gymnastics against Cities and Provinces. After the motions of Kovacs were filmed by digital highspeed camcorder setting in 90 frames/s, kinematical data were calculated through DLT method. The variables were computed in the lapse time, the joint angle, the position·velocity of body COG, the inferred tension force of bar, and body COG path were simulated according to skill level of Kovacs. Results: Firstly, it was revealed that the lapse time was 1.19±0.03 s in the swing phase, and 0.83±0.03 s in the aerial phase. Secondly, it was revealed that the shoulder·hip joint motions of S1 and S2 were better than the other subjects in the swing phase, and the knee joint motions of S1 and S2 were better than the other subjects in the aerial phase. Thirdly, it was revealed that the horizontal·vertical velocity of body COG were -1.40±0.03 m/s, 3.80±0.07 m/s respectively, and the vertical positions of S1 and S2 were higher a little than the other subjects. Lastly, the skill level of Kovacs of this subjects was evaluated into 3 steps; excellent, advanced, normal. They need to train the swing motion including a giant circle, and body motions in the air. Conclusion: It would be suggested that Korean domestic players should improve to increase the vertical velocity at release instant and train to control the limbs elaborately in the air.

Development of Bib Pants Design and Pattern for Cycling Smart Wear (사이클링 스마트웨어 제작을 위한 빕 팬츠 디자인 및 패턴 개발)

  • Yunyoung, Kim;Byeongha, Ryu;Woojae, Lee;Kikwang, Lee;Rira, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.91-104
    • /
    • 2022
  • In this study, a cycling smart wear for measuring cycling posture and motion was developed using a three-dimensional motion analysis camera and an IMU inertial sensor. Results were compared according to parts to derive the optimal smart device attachment location, enabling correct posture measurement and cycle motion analysis to design a pattern. Conclusions were as follows: 1) 'S-T8' > 'S-T10' > 'S-L4' was the most significant area for each lumbar spine using a 3D motion analysis system with representative posture change (90°, 60°, 30°) to derive incisions and size specifications; 2) the part with the smallest relative angle change among significant section reference points during pattern design was applied as a reference point for attaching a cycling smart device to secure detachable safety of the device. Optimal locations for attaching the cycling device were the "S-L4" hip bone (Sacrum) and lumbar spine No. 4 (Lumbar 4th); 3) the most suitable sensor attachment location for monitoring knee induction-abduction was the anatomical location of the rectus femoris; 4) a cycling smart wear pattern was developed without incision in the part where the sensor and electrode passed. The wearing was confirmed with 3D CLO. This study aims to provide basic research on exercise analysis smart wear, to expand the smart cycling area that could only be realized with smart devices and smart watches attached to current cycles, and to provide an opportunity to commercialize it as cycling smart wear.

The Effects of Trunk Movement and Ground Reaction Force during Sit to Stand Using Visual Feedback (시각 되먹임을 이용한 앉은 자세에서 일어서기 시 몸통의 동작과 지면 반발력에 미치는 영향)

  • Yeong-Geon Koh;Tae-Young Oh;Jae-Ho Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Purpose : This study was conducted to investigate the changes in trunk movement and ground reaction during sit to stand motion using visual feedback. Methods : Fifteen adults (average age: 23.53±1.77 years) participated in this study. An infrared reflective marker was attached to the body each participant for motion analysis, and the participants performed sit to stand motion while wearing a hat attached with a laser pointer, which provided visual feedback. First, the sit to stand action was repeated thrice without obtaining any visual feedback, followed by a three minute break. Next, the laser pointers attached to hats were irradiated on a whiteboard, located at a distance of 5 m in front of the chairs, on which the participants sat; a baseline was set, and the participants performed stand up movements three times under this condition. A visual feedback was provided to the participants to prevent the laser pointers from crossing the set baseline. During each stand-up movement, the position of the reflective marker attached to the subject's body was recorded in real time using an infrared camera for motion analysis. The trunk movement and ground reaction force were extracted through recorded data and analyzed according to the presence or absence of visual feedback. Results : The results indicated that in the presence of a visual feedback during the sit-to-stand movements, the range of motion of the trunk and hip joints decreased, whereas that of the knee and ankle joints increased in the sagittal plane. The rotation angle of the trunk in the horizontal plane decreased. The left and right movement speed of the center of pressure increased, the pressing force decreased, and the forward and backward movement speed of the trunk decreased. Conclusion : The results suggest that the efficiency and stability of the stand up movement of a body increase when a visual feedback is provided.

Involvement of EMG Variables and Muscle Characteristics in Force Steadiness by Level (수준별 힘 안정성에 대한 EMG 변인 및 근육 특성의 관여)

  • Hyeon Deok Jo;Maeng Kyu Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.336-345
    • /
    • 2023
  • The present study was designed to evaluate changes in neuromuscular properties and the structural and qualitative characteristics of muscles during submaximal isometric contractions at low-to-relatively vigorous target forces and to determine their influence on force steadiness (FS). Thirteen young adult males performed submaximal isometric knee extensions at 10, 20, 50, and 70% of their maximal voluntary isometric contraction using their non-dominant legs. During submaximal contractions, we recorded force, EMG signals from vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF), and ultrasound images from the distal RF (dRF). Force and EMG standard deviation (SD) and coefficient of variation (CV) values were used to measure FS and EMG steadiness, respectively. Muscle thickness (MT), pennation angle (PA), echo intensity (EI), and texture features were calculated from ultrasound images to assess the structural and qualitative characteristics of the muscle. FS, neuromuscular properties, and texture features showed significant differences across different force levels. Additionally, there were significant differences in EMG_CV among the quadriceps at the 50% and 70% force levels. The results of correlation analysis revealed that FS had a significant relationship with EMG_CV in VM, VL, and RF, as well as with the texture features of dRF. This study's findings demonstrate that EMG steadiness and texture features are influenced by the magnitude of the target force and are closely related to FS, indicating their potential contribution to force output control.

Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables (달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향)

  • Young-Seong Lee;Jae-Won Kang;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.81-92
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

Comparative Analysis of Open- Spike between Excellent and Non-excellent Players in Volleyball (배구 우수선수와 비우수선수간의 오픈 스파이크 동작의 비교 분석)

  • Kim, Chang-Bum;Kim, Young-Suk;Shin, Jun-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.253-264
    • /
    • 2003
  • This study aims at finding the structure of spike technique by analysing comparatively the spike action by excellent and by non-excellent players throughout the section from a flying jump to the time of landing for the correct analysis of spike action and tries to help athletes and coaches to execute a scientific training. For the objected person of this study, six of H College athletes three of excellent athletes and three of non-excellent athletes, presently registered as athlete with the Korea Volleyball federation) were chosen, and the factors of analysis were analysed upon performance time of action by section, human body centered displacement, change of articulation angle, speed change of articulation of the upper limbs, uniformity of the articulation of the upper limbs upon impact, etc. The conclusion of this study is as follow: 1. In the time required for taking action, it shows to take $1.067{\pm}0.057$ seconds for the group of excellent athletes and $1.034{\pm}0.033$ seconds for the group of non-excellent athletes. Although there was not big difference between two groups in the performance time of action, it showed that the group of excellent athletes takes longer compared to the group of non-excellent athletes. And it was found by the result of this study that the group of excellent athletes stays longer in the duration of flight. 2. In the displacements of horizontal movement and vertical movement, it was found that the group of excellent athletes have moved more than the group of non-excellent athletes in the horizontal movement of the center of human body 3. In the angles of wrist and knee, it was found that the excellent athletes have shown little than the non-excellent athletes in the entire sections, but that in the angle of elbow, the non-excellent athletes have shown bigger than the excellent athletes.. 4. In the speed of the articulation of the upper limbs upon impact, it was found that the group of excellent athletes have shown bigger than the group of non-excellent athletes, and that in the maximum value of the articulation of the upper limbs, the maximum value for the hand was indicated upon impact and that forearm and upper arm have shown the maximum value just before the impact. 5. In the uniformity of articulation of the upper limbs at the time of impact, the group of excellent athletes showed bigger than the group of non-excellent athletes in all the articulations.

Prognostic Factors Affecting the Treatment of the Tear of the Posterior Horn of Meniscus (반월상 연골 후각부 파열의 치료에 영향을 미치는 요인)

  • Ha, Dong-Jun;Kim, Chang-Wan;Seo, Seung-Suk;Cho, Il-Je
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.8 no.2
    • /
    • pp.89-94
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the factors affecting the treatment results of medial meniscus posterior horn tear. Materials and Methods: Forty seven patients who had been performed the arthroscopic surgery for medial meniscus posterior horn tear were enrolled in this study. We analyzed the clinical outcomes with Lysholm score and Tegner activity score in accordance with the factors such as patients' age, tibiofemoral angle, uptake in bone scintigraphy, surgical methods and patterns of meniscal tears, respectively. Results: The patients' age didn't affect to the results, but the preoperative tibiofemoral angle over valgus $4^{\circ}$ and the preoperative normal uptake in scintigraphic assessment showed a positive influence on the clinical outcomes. The partial meniscectomy and repair in surgical methods had no statistically significance. In addition, the pattern of meniscal tear did not have an effect on the clinical results. Conclusion: We can conclude that many factors should be considered to get satisfactory results. Among them, preoperative bone scintigraphy may be a good assessment factor for the postoperative prognosis, reflecting the condition of meniscal tear and the periarticular bone and soft tissue.

  • PDF

The Comparative Analysis on the Kinematic Variables according to the Types of Stance in the Dead-lift of Snatch Events of Junior Weight Lifters (주니어 역도 선수 인상 종목의 Dead-lift 동작 시 스탠스유형에 따른 운동학적 변인 비교분석)

  • Chung, Nam-Ju;Kim, Jae-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.99-107
    • /
    • 2008
  • The aim of this study was to provide fundamental data in training to improve athletes' competitiveness through the comparative analysis of kinematic variables according to the types of stance. For this study, the subjects selected 4 Junior Weight lifters. Subjects performed two type(8-type and 11-type) Dead-lift and their performance was sampled at 60frame/sec. using four high-speed digital video cameras. After digitizing images from four cameras, the two-dimensional coordinates were used to produce three-dimensional coordinates of the 15 body segments(20 joint makers and 2 bar makers). And the results were as follows. 1. As for the time required for stances, 8-type motion was faster than 11-type motion. 2. As for the body-center shift in stances, 8-type motion was bigger than 11-type motion in back and forth motion shift, and 11-type motion was bigger than 8-type motion in right and left, up and down motion shift. 3. As for the speed of a body-center and a babel, 8-type motion was faster than 11-type motion. 4. As for the motion-trace of a babel in stances, 8-type motion was bigger than 11-type in back and forth, right and left motion and 11-type motion was bigger than 8-type in up and down motion. 5. As for the body-angles in stances, 8-type motion was bigger than 11-type in the stance angle, and 11-type motion is bigger than 8-type in the angles of a coxa, a knee and an ankle. As a result of the comparative analysis between 8-type and 11-type stance of Junior Weight lifters dead-lift, both were generally similar in variables, but 8-type motion was more stable than 11-type in aspects of time, speed, center shift, angle change.