• 제목/요약/키워드: KIVA - 3 Code

검색결과 32건 처리시간 0.027초

유전알고리즘을 이용한 디젤엔진의 연소최적화 기법에 대한 연구 (An Optimization Technique for Diesel Engine Combustion Using a Micro Genetic Algorithm)

  • 김동광;조남효;차순창;조순호
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.51-58
    • /
    • 2004
  • Optimization of engine desist and operation parameters using a genetic algorithm was demonstrated for direct injection diesel engine combustion. A micro genetic algorithm and a modified KIVA-3V code were used for the analysis and optimization of the engine combustion. At each generation of the optimization step the micro genetic algorithm generated five groups of parameter sets, and the five cases of KIVA-3V analysis were to be performed either in series or in parallel. The micro genetic algorithm code was also parallelized by using MPI programming, and a multi-CPU parallel supercomputer was used to speed up the optimization process by four times. An example case for a fixed engine speed was performed with six parameters of intake swirl ratio, compression ratio, fuel injection included angle, injector hole number, SOI, and injection duration. A simultaneous optimization technique for the whole range of engine speeds would be suggested for further studies.

기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석 (Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model)

  • 최민기
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

분열모델 상수가 분무 및 연소특성에 미치는 영향 (Effects of Spray Breakup Model Variables on Spray and Combustion Characteristics)

  • 이승필;박준규;박성욱
    • 한국분무공학회지
    • /
    • 제22권1호
    • /
    • pp.29-35
    • /
    • 2017
  • This paper describes the effects of spray breakup model constants on spray and combustion characteristics in single cylinder compression engine. KIVA-3V code coupled with a CHEMKIN chemistry solver was used for numerical analysis. In this study, spray simulations and combustion simulations are studied simultaneously. Spray simulation was conducted in constant volume to reduce the effects of air-flow as swirl or tumble. The model validation was conducted and there are little difference between experiments and simulation, this differences were reasonable. In spray simulation, the effects of model constants on spray tip penetration, spray patter and SMD were studied. Furthermore, the analysis of effects of breakup variables on combustion and emissions characteristics was conducted. The results show the KH-RT breakup model constants affects spray and combustion characteristics strongly. Increasing KH model variable (B1) and RT model constants ($C_{\tau}$, $C_{RT}$) induced slower breakup time.

가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구 (A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

HSDI 디젤엔진의 연료분사계와 연소현상을 연계한 수치해석 (Coupled Simulation of Common Rail Fuel Injection and Combustion Characteristics in a HSDI Diesel Engine)

  • 이석영;허강열
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2010
  • In this study, the coupled simulation of fuel injection model and three-dimensional KIVA-3V code was tried to develop an algorism for predicting the effects of varying fuel injection parameter on the characteristics of fuel injection and emissions. The numerical simulations were performed using STAR-CD code in order to calculate the intake air flow, and the combustion characteristics is examined by KIVA-3V code linked with the conditional moment closure(CMC) model to predict mean turbulent reaction rate. Parametric investigation with respect to twelve relevant injection parameters shows that appropriate modification of control chamber orifice diameter, needle valve spring constant and nozzle chamber orifice diameter can significantly reduce NOx and soot emissions. Consequently, it is needed to optimize the fuel injection system to reduce the specific emissions such as NOx and soot.

바이오디젤 엔진의 연소과정 모델링 (Modeling of Biodiesel Combustion on Compression Ignition Engine)

  • 최민기;차준표;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.309-310
    • /
    • 2012
  • Modeling of biodiesel combustion on compression ignition engine was conducted by using the KIVA3v-Release 2 code coupled with Chemkin chemistry solver2. In order to calculate the chemical kinetics of combustion of biodiesel, a reduced mechanism of methyl decanoate and methyl 9-decanoate was used. It is composed of 123 species and 394 reactions. Also, the experiments were performed on a single-cylinder engine. The simulation results agreed well with experiments results. And soot concentrations of biodiesel were lower than those of diesel.

  • PDF

흡기가열을 이용한 가솔린압축착화 엔진의 최적구동조건에 관한 수치적 연구 (Numerical Analysis about Optimal Conditions of GDICI Engine Operation using Intake Preheating)

  • 최민기;차준표;권석주;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.105-106
    • /
    • 2012
  • This study is numerical analysis about optimal conditions of GDICI (gasoline direct injection compression ignition) engine operation using intake preheating. Numerical modeling was performed by using the KIVA-3V Release2 code integrated Chemkin chemistry solver II. For validation of numerical model, experiments were performed on a single-cylinder engine. Throughout the numerical simulations under variable conditions, the ranges of optimal conditions were found.

  • PDF

기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법 (Modeling of CNG Direct Injection using Gaseous Sphere Injection Model)

  • 최민기;박성욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

유전알고리즘을 이용한 대형 디젤 엔진 운전 조건 최적화 (Optimization of Heavy-Duty Diesel Engine Operating Parameters Using Micro-Genetic Algorithms)

  • 김만식
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.101-107
    • /
    • 2005
  • In this paper, optimized operating parameters were found using multi-dimensional engine simulation software (KIVA-3V) and micro-genetic algorithm for heavy duty diesel engine. The engine operating condition considered was at 1,737 rev/min and 57 % load. Engine simulation model was validated using an engine equipped with a high pressure electronic unit injector (HEUI) system. Three important parameters were used for the optimization - boost pressure, EGR rate and start of injection timing. Numerical optimization identified HCCI-like combustion characteristics showing significant improvements for the soot and $NO_X$ emissions. The optimized soot and $NO_X$ emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively. Moreover, the optimum results met EPA 2007 mandates at the operating point considered.

편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석 (Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine)

  • 김홍석;성낙원
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF