• Title/Summary/Keyword: KINETICS

Search Result 4,011, Processing Time 0.027 seconds

N-(4-[$^{18}F$]Fluoromethylbenzyl)spiperone : A Selective Radiotracer for In Vivo Studies of Dopamine $D_2$ Receptors (N-(4-[$^{18}F$Fluoromethylbenzyl)spiperone : 유력한 도파민 $D_2$ 수용체 선택성 방사성리간드)

  • Kim, Sang-Eun;Choe, Yearn-Seong;Chi, Dae-Yoon;Lee, Kyung-Han;Choi, Yong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.4
    • /
    • pp.421-426
    • /
    • 1997
  • We evaluated the in vivo kinetics, distribution, and pharmacology of N-(4-[$^{18}F$]fluoromethylbenzyl)spiperone ([$^{18}F$]FMBS), a newly developed derivative of spiperone, as a potentially more selective radiotracer for the dopamine (DA) $D_2$ receptors. Mice received 1.9-3.7 MBq (1.8-3.6 nmol/kg) of [$^{18}F$]FMBS by tail vein injection. The time course and regional distribution of the tracer in brain were assessed. Blocking studies were carried out by intravenously preinjecting DA $D_2$ receptor blockers (spiperone, butaclamol) as well as drugs with high affinity for DA $D_1$ (SCH 23390), DA transporter (GBR 12909), and serotonin $S_2$ ($5-HT_2$) (ketanserin) sites. After injection of the tracer, the radioactivity in striatum increased steadily over time, resulting in a striatal-to-cerebellar ratio of 4.8 at 120 min postinjection. By contrast, the radioactivity in cerebellum, frontal cortex, and remaining cortex washed out rapidly. Preinjection of unlabeled FMBS (1 mg/kg) and spiperone (1 mg/kg) reduced [$^{18}F$]FMBS striatal-to-cerebellar ratio by 41% and 80%, respectively. (+)-Butaclamol (1 mg/kg) blocked 80% of the striatal [$^{18}F$]FMBS binding, while (-)-butaclamol (1 mg/kg) did not. Preinjection of SCH 23390 (1 mg/kg) and GBR 12909 (5 mg/kg) had no significant effect on [$^{18}F$]FMBS binding. Ketanserin (1 mg/kg), a ligand for the $5-HT_2$ receptors, did not cause significant inhibition either in striatum, in frontal cortex, or the remaining cortex. The results demonstrate that [$^{18}F$]FMBS labels DA $D_2$ receptors selectively in vivo in the mouse brain. It may hold promise as a selective radiotracer for studying DA $D_2$ receptors in vivo by PET.

  • PDF

Preparation of ZrC/SiC by Carbothermal Reduction of Zircon (지르콘의 탄소열환원에 의한 ZrC/SiC의 합성)

  • Park, Hong-Chae;Lee, Yoon-Bok;Lee, Cheol-Gyu;Oh, Ki-Dong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1044-1055
    • /
    • 1994
  • The preparation of ZrC/SiC mixed powders from $ZrSiO_4/C$ and $ZrSiO_4/Al/C$ systems was attempted in the temperature range below $1600^{\circ}C$ under Ar or $Ar/H_2$ gas flow(100-500ml/min). The formation mechanism and kinetics of ZrC/SiC were suggested and the resultant powders were characterized. In $ZrSiO_4/C$ system, ZrC and SiC were formed by competitive reaction of $ZrO_2(s)$ and SiO(g) with carbon at temperature higher than $1400^{\circ}C$. The apparent activation energy for the formation of ZrC was approximately 18.5kcal/mol($1400-1600^{\circ}C$). In $ZrSiO_4/Al/C$ system, ZrC was formed by reaction of ZrO(g) with Al(l, g) and carbon at temperature higher than $1200^{\circ}C$, and SiC was formed by reduction-carbonization of SiO(g) with Al(l, g) and carbon at temperature higher than $1300^{\circ}C$. The products obtained at $1600^{\circ}C$ for 5h consisted of ZrC with lattice constant of $4.679{\AA}$ and crystallite size of $640{\AA}$, and SiC with lattice constant of $4.135{\AA}$ and crystallize size of $500{\AA}$. And also, the mean particle size was about $21.8{\mu}m$.

  • PDF

A Study on the Kinetics of Copper Ions Reduction and Deposition Morphology with the Rotating Disk Electrode (RDE를 이용한 구리이온의 환원속도 및 전착형태에 관한 고찰)

  • Nam, Sang Cheol;Um, Sung Hyun;Lee, Choong Young;Tak, Yongsug;Nam, Chong Woo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.645-652
    • /
    • 1997
  • Electrochemical characteristics and kinetic parameters of copper ion reduction were investigated with a platinum rotating disk electrode (RDE) in a diffusion controlled region. Reduction of Cu(II) in sulfate had one-step two-xelectron process, while the reduction of Cu(II) in chloride solution was involved two one-electron processes. The transfer coefficient of Cu(II) in sulfate solution was lowest, and the transfer coefficient of Cu(I) in halide solutions had the value of nearly one. In chloride solutions, electrodeposition rate of Cu(II) was about one hundred times faster than Cu(I). Diffusion coefficient increased in the order of Cu(II) in chloride solution, Cu(I) in the iodide, bromide, chloride solution, Cu(II) in sulfate solution. The calculated ionic radii and activation energy for diffusion decreased in the same order as above. Morphological study on the copper electrodeposition indicated that the electrode surface became rougher as both concentration and reduction potential increases, and the roughness of the surface was analyzed with UV/VIS spectrophotometer.

  • PDF

A Study of Dewatering Phenomena of Potato Slice Cytorrhysed by High Molecules (고분자 용액의 세포 압착 현상에 의한 감자 절편의 탈수 현상에 관한 연구)

  • Choi, Dong-Won;Shin, Hae-Hun;Kim, Jong-Geu
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.4
    • /
    • pp.358-365
    • /
    • 2006
  • To study simultaneous water and solute transport kinetics during soaking in concentrated solution, the influence of the concentration and molecular weight of the solute(polyethylene glycol(PEG) and NaCl) in the soaking solution and the temperature on the water loss and solute gain rates were observed by using a model vegetable tissue(potato). When potato slices$(4cm{\times}4cm{\times}0.1cm)$ soaked in 60% PEG solutions, the water loss rate of the early phase decreased with increasing of the molecular weight of PEG from 200 to 6,000, while the final water loss increased with increasing the molecular weight of PEG and it reached to 80%. The cell wall of potato tissue was permeable to NaCl and PEGs of which average molecular weight is smaller than 400 but it was not permeable to PEG 600 and larger molecules. PEG which has average molecular weight below 600 induced plasmolysis and those above 600 induced cytorrhysis. The water loss rate of potato sample soaked in smaller molecular weight PEG solution was faster than those soaked in higher molecular weight PEG solution before cytorrhysis happened. The water loss rate was reversed after cytorrhysis happened. The volume change of potato within the first 60 minutes was larger in low molecular PEG solution but the final ratio of decreasing volume was larger in high molecular PEG solutions. In PEG 200 solution, the potato tissue was slightly shrinked without shape change. However, in PEG 4,000 solution, volume of potato was reduced significantly and potato tissue was twisted.

Sterilization of Yakju(Rice Wine) Using a Batch-type High Voltage Pulsed Electric Field System (고전장펄스를 이용한 약주의 회분식 살균)

  • Kim, Su-Yeon;Park, Young-Seo;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1247-1253
    • /
    • 1999
  • Yakju(rice wine) was sterilized with high-voltage pulses of short time on a batch pulsed electric field(PEF) system. The initial microbial counts of Yakju were 7.52 X $10^4\;CFU/mL$ for total aerobes, 2.20 X $10^4\;CFU/mL$ for lactic acid bacteria and 7.08 X $10^4\;CFU/mL$ for yeasts. The pH, acidity and electric conductivity of Yakju were 3.36, 0.462% and 1.24 mS/cm, respectively. Yakju was treated with 2-250 of pulses exponential-wave formed electric pulses under the field strength of 12.5-25 kV/cm. The critical strengths of the electrical field for the sterilization of Yakju were 7.5 kV/cm for total aerobes, 8.5 kV/cm for lactic acid bacteria and 6.5 kV/cm for yeasts. Logarithmic survival rates decreased linearly at low pulse number, but curvilinearly at high pulse number. The PEF sterilization kinetics of Yakju could be analysed by In s = In A-k In (n) and the sterilization rate constant increased with electric field strength and the size of target microorganisms. No changed in pH, acidity, and the growth of microorganisms were found in the PEF treated Yakju during the storage for 6 weeks at both $4^{\circ}C$ And $30^{\circ}C$.

  • PDF

The syudy of reaction kinetics in the thermophilic aerobic digestion process of piggery wastewater (축산폐수의 고온호기성 소화공정에서의 반응동력학 연구)

  • Kim, Yong-Kwan;Kim, Seok-Won;Kim, Baek-Jae
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.97-102
    • /
    • 2007
  • The piggery wastewater is the major source of the water pollution problem in the rural area. The treatment alternatives for piggery wastewater are limited by the characteristics of both high organic and nitrogen(N) content. In order to investigate an efficient N removal system, the thermophilic aerobic digestion process was examined. The experiment was investigated organic and nitrogen removal efficiency at various HRTs and air supply volume. The results of semi-continuous experiment indicated that a higher removal of the soluble portion of COD was achieved with the longer HRTs. However, the inert portion of COD in piggery wastewater was not much changed by thermophilic aerobic digestion. In addition, with the higher HRT of 3 days, up to 79% of NH4-N removal efficiency was achieved. Lower the HRTs, a decrease of NH4-N removal was founds. The gas samples from the lab reactor were analyzed along with the N content in influent and effluent. The N2O formation in our system indicates a novel aerobic deammonification process occurred during the thermophilic aerobic digestion. Both N02 and N03 were not presented in the effluent of thermophilic aerobic digester. With the HRT of 3 days, 36.4% of influent N(or 57.5% removal N) was aerobically converted to N2O gas. The ammonium conversion to N2O gas significantly decrease to 4.5% at low HRT of .05 day..

  • PDF

Effect of Replacing Corn and Wheat Bran With Soyhulls in Lactation Cow Diets on In Situ Digestion Characteristics of Dietary Dry Matter and Fiber and Lactation Performance

  • Meng, Qingxiang;Lu, Lin;Min, Xiaomei;McKinnon, P.J.;Xiong, Yiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1691-1698
    • /
    • 2000
  • An in situ digestion trial (Experiment 1) and a lactation trial (Experiment 2) were conducted to determine the effects of replacing corn and wheat bran with soyhulls (SH) in lactating dairy cow diets on the extent and kinetics of digestion of DM and NDF, and lactation performance. In experiment 1, five mixed feeds consisting of mixed concentrate and roughages (50:50 on a DM basis) were formulated on isonitrogenous and isoenergetic bases to produce five levels (0, 25, 50, 75 and 100%) of SH replacement for corn and wheat bran. SH had high in situ digestion (92 and 89% for potentially digestible DM and NDF) and fairly fast digestion rate (7.2 and 6.3 %/h for DM and NDF). Increasing level of SH replacement resulted in increased NDF digestibility (linear, p=0.001-0.04) and similar DM digestibility (beyond 12 h incubation, p=0.10-0.41). As level of SH replacement increased, percentage of slowly digestible fraction (b) of DM increased (linear, p=0.03), percentage of rapidly digestible fraction (a) of DM tended to decrease (linear, p=0.14), and DM digestion lag time tended to be longer (linear, p=0.13). Percentage of potentially digestible fraction (a+b) and digestion rate (c) of slowly digestible fraction of dietary DM remained unaltered (p=0.36-0.90) with increasing SH in the diet. Increasing level of SH for replacing corn and wheat bran in the diet resulted in increases in percentages of b (quadratic, p<0.001), a (linear, p=0.08), a+b (quadratic, p=0.001) and a tendency to increase in c for NDF (linear, p<0.19). It was also observed that there was a satisfactory fit of a non-linear regression model to NDF digestion data ($R^2=0.986-0.998$), but a relatively poor fit of the model to DM digestion data ($R^2=0.915-0.968$). In experiment 2, 42 lactating Holstein cows were used in a randomized complete block design. SH replaced corn and wheat bran in mixed concentrates at 0, 25, and 50%, respectively. These mixed concentrates were mixed with roughages and fed ad libitum as complete diets. Replacing corn and wheat bran with SH at 0, 25 and 50% levels did not influence (p=0.56-0.95) DM intakes (18.4, 18.6, and 18.5 kg/d), milk yields (27.7, 28.4 and 27.6 kg/d), 4% fat-corrected-milk (FCM) yields (26.2, 27.6, and 27.3 kg/d) and percentages of milk protein (3.12, 3.17 and 3.18%), milk lactose (4.69, 4.76 and 4.68%) and SNF (8.50, 8.64, and 8.54%). On the other hand, milk fat percentges linearly increased (3.63, 3.85 and 3.90% for SH replacement rates of 0, 25 and 50% in the diet, p=0.08), while feed costs per kg FCM production were reduced.

Kinetics and Mechanism for Aquation of cis-[Co(en)$_2$YCl]$^{r+}$ (Y = NH$_3^-$, NO$_2$, NCS$^-$, H$_2$O} in Hg$^{2+}$ Aqueous Solution ($Hg^{2+}$ 수용액 내에서 cis-[Co(en)$_2$YCl]$^{r+}$ (Y = $NH_3$, NO$_2^-$, NCS$^-$, $H_2O$)의 아쿠아 반응속도와 반응메카니즘)

  • Byung-Kak Park;Joo-Sang Lim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.476-482
    • /
    • 1988
  • Kinetic studies and theoretical investigations were made to illustrate the mechanism of the aquation of cis-[Co(en)$_2$YCl]$^{r+}$ (Y = NH$_3$, NO$_2^-$, NCS$^-$, $H_2O$) in $Hg^{2+}$ aqueous solution UV/vis-spectrophotometrically. The aquation of cis-[Co(en)$_2$YCl]$^{r+}$ have been found to be the second order for overall reaction as first order for each of substrate and Hg$^{2+}$+ catalyst. The reaction rate was increased in the order of Y=NH$_3$ < NCS$^-$- < $H_2O$ < $NO_2^-$, which are neighboring group of Cl. The step of bond formation was found to be the rate determining one, because the net charge of central metal ion run parallel with the observed rate constant. On the basis of rate determining step, kinetic data and the observed activation parameters, we have proposed the Id mechanism for the reaction system. The rate equation derived from the proposed mechanism has been in agreement with the observed rate equation.

  • PDF

Kinetics of the Reaction of Benzyl Chlorides with Pyridine in Methanol Solvent under High Pressure (고압하의 메탄올 용매내에서 염화벤질류와 피리딘과의 반응에 대한 반응속도론적 연구)

  • Oh Cheun Kwon;Young Cheul Kim;Jin Burm Kyong;Kee Joon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.413-418
    • /
    • 1987
  • Rates of the reaction for p-nitro benzyl chloride, benzyl chloride and p-methyl benzyl chloride with pyridine in methanol solvent have been measured by an electric conductivity method at 40$^{\circ}$C and 50$^{\circ}$C under various pressures (1∼2000bar). Pseudo first-order rate constants and second-order rate constants were determined. Rates of these reactions were increased in the order p-NO$_2$ < p-H < p-CH$_3$ and increased with temperature, pressure and concentration of pyridine. From those rate constants, the activation parameters were evaluated. The activation volume and the activation compressibility coefficient are both negative values, but the activation enthalpy is positive and the activation entropy is large negative value. From the evaluation of the ground state and transition state which was resulted from substituents and pressure, it was found that this reaction proceeds through S$_N$2 reaction, and S$_N$2 fashion is slightly disappeared as pressure increases.

  • PDF

Micelles in Physical Chemistry Laboratory. Surfactant Catalyzed Oxidation of Glycine by Acidic Permanganate

  • Pare, Brijesh;Kaur, Parwinder;Bhagwat, V.W.;Fogliani, Charles
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.2
    • /
    • pp.195-202
    • /
    • 2004
  • Micellar catalysis is an essential part of theoretical and experimental curricular. The sodium dodecylsulfate (SDS) catalyzed reaction between glycine and potassium permanganate in acidic medium is an ideal kinetic experiment for the secondary and undergraduate physical chemistry laboratory, to show the effect of micellar catalysis on rate of the reaction. The reaction is conducted both with and without SDS to observe the rate enhancement in the presence of surfactant. To show surfactant catalysis a plot between k and [SDS] is plotted. As surfactant catalysis is observed even before the critical micelle concentration of SDS, this pre-micellar catalysis can be understood in the light of positive co-operativity. The value of positive cooperative index (n) has been found to be 2.37. Further, dependence of the reaction rate on substrate and oxidant concentrations is also discussed. The reaction follows pseudo-first-order kinetics. The overall reaction is second order, with first-order dependence on both glycine and permanganate concentrations. The theory of surfactant catalysis is also discussed. With the conditions specified in the experiment, total reaction times are in 3~4 hours lab session, thus allowing several data sets to be acquired in a single laboratory period. Preparation of solutions and procedure is also given in detail.