• Title/Summary/Keyword: KINETICS

Search Result 3,993, Processing Time 0.034 seconds

Oxidative Degradation Kinetics of Tocopherols during Heating

  • Chung, Hae-Young
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.2
    • /
    • pp.115-118
    • /
    • 2007
  • Tocopherols are important lipid-phase antioxidants that are subject to heat degradation. Therefore, kinetic analyses for oxidative degradation of tocopherols as a function of temperatures and times were performed. Alpha-, gamma- and delta-tocopherols dissolved in glycerol were heated at 100${\sim}$250$^{\circ}C$ for 5~60 min. Oxidized tocopherols were analyzed by HPLC using a reversed phase ${\mu}$-Bondapak C$_{18}$-column with two kinds of elution solvent systems in a gradient mode. The degradation kinetics for tocopherols followed a first-order kinetic model. The rate of tocopherol degradation was dependent on heating temperatures. The degradation rate constants for ${\gamma}$- and ${\delta}$-tocopherols were higher than those for ${\alpha}$-tocopherol. The experimental activation energies of ${\alpha}$-, ${\gamma}$- and ${\delta}$- tocopherols were 2.51, 6.05 and 5.34 kcal/mole, respectively. The experimental activation energies for the oxidative degradation of ${\gamma}$- and ${\delta}$-tocopherols were higher than that of ${\alpha}$-tocopherol.

A New Cure Kinetic Model Using Dynamic Differential Scanning Calorimetry (일정온도 상승률 열분석법을 이용한 수지 경화 모델 개발)

  • Eom, Mun-Gwang;Hwang, Byeong-Seon;Isaac M. Daniel
    • 연구논문집
    • /
    • s.29
    • /
    • pp.151-162
    • /
    • 1999
  • In general, manufacturing processes of thermosetting composites consist of mold filling and resin cure. The important parameters used in modeling and designing mold filling are the permeability of the fibrous preform and the viscosity of the resin. To consolidate a composite, resin cure or chemical reaction plays an essential role. Cure kinetics. Therefore, is necessary to quantify the extent of chemical reaction or degree of cure. It is also important to predict resin viscosity which can change due to chemical reaction during mold filling. There exists a heat transfer between the mold and the composite during mold filling and resin cure. Cure kinetics is also used to predict a temperature profile inside composite. In this study, a new scheme which can determine cure kinetics from dynamic temperature scaning was proposed. The method was applied to epoxy resin system and was verified by comparing measurements and predictions.

  • PDF

Ultrasonic Studies of Proton-Exchange Reaction Between Hydrogen Phosphate Ions and Imidazole

  • Choi, Chang-Ha;Chung, Myung-Kiu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.24-28
    • /
    • 1997
  • Ultrasonic relaxation measurements for imidazole and its derivative in phosphate buffer exhibit a high peak of absorption at neutral pH. Near neutral pH, protolysis and hydrosis may be neglected and the essential reaction only consists of a direct proton-exchange. The kinetics constants and the volume changes for the proton transfer reaction with the protonated imidazole and 2-methylimidazole have been determined at 25℃. The kinetics constants are 7.2×108s-1M-1for imidazole and 1.7×108s-1M-1 for 2-methylimidazole. The kinetics constants are used to estimate the spectrum of relaxation times and acoustic relaxation amplitude associated with intermolecular and intramolecular proton-exchange reactions in bilogical media. It is concluded that the magnitude of the acoustic absorption reasonalbly attributable to the perturbation of proton-transfer equilibria between imidazole and inorganic phosphate is comparable in magnitude with the acoustic absorption observed in some intact tissues.

  • PDF

Study of Kinetics of Bromophenol Blue Fading in Alcohol-Water Binary Mixtures by SESMORTAC Model

  • Samiey, Babak;Alizadeh, Kamal;Mousavi, Mir Fazlolah;Alizadeh, Nader
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.384-392
    • /
    • 2005
  • Solvent effects on the kinetics of bromophenol blue fading have been investigated within a temperature range in binary mixtures of methanol, ethanol, 1-propanol, ethylene glycol and 1,2-propanediol with water of varying solvent compositions up to 40% by weight of organic solvent component. Correlation of logk with reciprocal of the dielectric constant was linear. Finally a mechanism was proposed for the bromophenol blue fading upon SESMORTAC (study of effect of solvent mixture on the one-step reaction rates using the transition state theory and cage effect) model, by means of this model, the fundamental rate constants of the fading reaction in these solvent systems were calculated.

Cure Kinetics of a Bisphenol-A Type Vinyl-Ester Resin Using Non-Isothermal DSC

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In the current research, the curing kinetics of a mixture system consisting of a Bisphenol-A type vinyl ester resin and styrene monomer was studied. Methylethylketone peroxide and cobalt octoate were used as the polymerization initiator and accelerator respectively. Thermograms with several different heating rates were obtained using non-isothermal differential scanning calorimetry. Activation energy values analyzed by the Flynn-Wall-Ozawa isoconversional method showed a three-step change with conversion ${\alpha}$: a slight decrease initially for ${\alpha}$ < 0.1, a constant value of 47.9 kJ/mol in the range 0.1 < ${\alpha}$ < 0.7, and a slow increase for 0.7 < ${\alpha}$. When assuming a constant activation energy of 47.9 kJ/mol, an autocatalytic model of the Sestak-Berggren equation was considered as the proper mathematical model of the conversion function, indicating an overall order of 1.2.

Kinetics on the Thermal Decomposition of Cellulose (셀룰로오스의 열분해 반응속도론)

  • 최승찬;박영수
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.5 no.2
    • /
    • pp.55-62
    • /
    • 1983
  • Four of non- isothermal methods evaluating kinetics have been studied by using differential scanning calorimetry (DSC) and thermogravimetry (TG) and applied for kinetics of the thermal decomposition of cellulose. It is concluded that the heating evolution methods with DSC and approximative methods with TC can lead to satisfactory kinetic analysis. Results calculating the reacting order and the activation energy of cellulose decomposition were 1/2 order and 42kcaB/mol, respectively.

  • PDF

Bioavailability of sorbed phenanthrene in soil slurries (토양 슬러리내에 수착된 phenanthrene의 생물학적 이용성)

  • 신원식;김영규;김영훈;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.92-95
    • /
    • 2002
  • Bioavailability study was conducted to elucidate the relationship between sorption/desorption and biodegradation of sorbed phenanthrene in seven different soils. Mineralization kinetics was determined for phenanthrene-sorbed soil slurries inoculated with Pseudomonas putida (ATCC strain 17484). Two biodegradation models were used to fit mineralization kinetics; (i) a first-order degradation model and (ii) a coupled degradation-desorption model. The biodegradation rates were in order of vermicompost >Bion peat > 50% organoclay > Pahokee > blank (no soil, medium only) > montmorillonite > Ohio shale. The mineralization rate constants increased as desorption-resistance of phenanthrene increased. Among the tested sorbents, active biodegradation of phenanthrene was observed in vermicompost and Bion peat. Biodegradation in these two sorbents exhibited little lag time and a high maximum mineralized capacity. The role of sorption/desorption in bioavailability of phenanthrene sorbed in soils was discussed.

  • PDF

Optimization of Repulping Process of Unsorted ONP for Pulp Mold (II) - Pilot trial -

  • Cho, Byoung-Uk;Ryu, Jeong-Yong;Fabry, Benjamin;Song, Bong-Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.39-44
    • /
    • 2007
  • In order to utilize unsorted ONP, which contains leaflets (printed coated papers), as a raw material to produce pulp mold, optimum conditions for repulping were investigated with the pilot Helico pulper at Centre Technique du Paper (CTP), France. Two major process factors were focused: repulping concentration and rotor speed. Repulping at a higher concentration showed more rapid defibering kinetics. Increasing the rotational speed of rotor at the optimum repulping concentration accelerated the defibering kinetics while it also led to higher fines generation and faster decrease in drainage property of the produced pulp. Hence, an alternative way was suggested: starting repulping at a conventional rotor speed and then accelerating the rotor speed for the last minute(s) of repulping.

Spreading Kinetics of Poly(diisobutylene maleic acid) at the Air-water Interface

  • Kim, Nam Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.661-668
    • /
    • 2015
  • The surface rheological properties of polymer monolayer show complicated non-linear viscoelastic flow phenomena when they are subjected to spreading flow. These spreading flow properties are controlled by the characteristics of flow units. The kinetics of the formation of an interfacial film obtained after spreading poly(diisobutylene maleic acid) at air-water interface were studied by measuring of the surface pressure with time. The experimental data were analyzed theoretically according to a nonlinear surface viscoelastic model. The values of dynamic modulus, static modulus, surface viscosities and rheological parameters in various area/ monomer were obtained by appling experimental data to the equation of nonlinear surface viscoelastic model.

The Kinetics of the Pepsin-Catalyzed Hydrolysis of N-Carbobenzoxy-L-Glutamyl-L-Tyrosine by Determination of the Spectrophotometer (合成基質 N-Carbobenzoxy-L-glutamyl-L-tyrosine의 Pepsin 加水分解反應의 分光光度法에 依한 速度論的 硏究)

  • Hong Dae Shin
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.155-160
    • /
    • 1970
  • The kinetics of the pepsin-catalyzed hydrolysis of N-carbobenzoxy-L-glutamyl-L-tyrosine at pH 3.5 and $37^{\circ}C$ were determined by a spectrophotometric technique. The pepsin used was further purified on a Sephadex G-75 column. The kinetics data were Km = l.7 ${\times}10^{-3}M,\;-{\Delta}F^{\circ}$ = 3.99Kcal/mole, and $k^3=\;2.1{\times}10^{-2}\;sec^{-1}$. An analysis of the above data and other investigators' data obtained from some dipeptides led to the following conclusions. (1) Phenylalanyl residues in a synthetic peptide are bound to pepsin more strongly than glutamyl or tyrosyl residues, supporting the theory that a part of the binding region of the active center is hydrophobic. (2) Dipeptides are bound to pepsin principally through their side chains and the binding involves both side-chain residues. (3) The nature of amino acids in dipeptides $R_2-R_1,\;affect\;the\;k_3$ values.

  • PDF