• Title/Summary/Keyword: KINEMATIC ANALYSIS

Search Result 1,492, Processing Time 0.037 seconds

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (II) - Application and Analysis - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(II) - 적용 및 분석 -)

  • Jung, In Kyun;Shin, Hyung Jin;Park, Jin Hyeog;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.709-721
    • /
    • 2008
  • This paper is to test the applicability of ModKIMSTORM (Modified KIneMatic Wave STOrm Runoff Model) by applying it to Namgangdam watershed of $2,293km^2$. Model inputs (DEM, land use, soil related information) were prepared in 500 m spatial resolution. Using five typhoon events (Saomi in 2000, Rusa in 2002, Maemi in 2003, Megi in 2004 and Ewiniar in 2006) and two storm events (May of 2003 and July of 2004), the model was calibrated and verified by comparing the simulated streamflow with the observed one at the outlet of the watershed. The Pearson's coefficient of determination $R^2$, Nash and Sutcliffe model efficiency E, the deviation of runoff volumes $D_v$, relative error of the peak runoff rate $EQ_p$, and absolute error of the time to peak runoff $ET_p$ showed the average value of 0.984, 0.981, 3.63%, 0.003, and 0.48 hr for 4 storms calibration and 0.937, 0.895, 8.08%, 0.138, and 0.73 hr for 3 storms verification respectively. Among the model parameters, the stream Manning's roughness coefficient was the most sensitive for peak runoff and the initial soil moisture content was highly sensitive for runoff volume fitting. We could look into the behavior of hyrologic components from the spatial results during the storm periods and get some clue for the watershed management by storms.

Effects of the PNF Leg Pattern according to Chain Exercise Postures and Resistance Intensity on the Contralateral Leg's Muscle Activity (사슬운동자세와 저항강도에 따른 PNF 다리패턴이 반대측 다리의 근활성도에 미치는 영향)

  • Seok, Him;Yoon, Sung-Young;Heo, Jae-Seok;Lee, Sang-Yeol
    • PNF and Movement
    • /
    • v.19 no.3
    • /
    • pp.423-433
    • /
    • 2021
  • Purpose: Proprioceptive neuromuscular facilitation (PNF) is a method for promoting functional movements by facilitating neuromuscular responses through the stimulation of proprioceptors in the body using spiral and diagonal patterns. Irradiation, a basic principle of PNF, is a phenomenon in which the muscle activity of a body part caused by resistance is increased or spread into muscles in other parts via their connected muscles. Resistance training can be divided by body alignment into closed and open chain exercises. Methods: In this study, 19 healthy men in their 20s and 30s were selected as subjects. They performed PNF hip flexion, abduction, and internal rotation motions on their dominant side in an open chain exercise posture in which the nondominant sole was away from the wall, and in a closed chain exercise posture in which the sole was fixed to the wall. The nondominant leg's muscle activity was measured while resistance was maintained with applied pressure at 0%, 25%, 50%, 75%, and 100% of the maximum muscle strength in the last range of motions. A two-way analysis of variance (ANOVA) was conducted for a comparative analysis of the contralateral leg's muscle activity according to the chain exercise postures and the intensity of resistance intensity during PNF hip flexion, abduction, and internal rotation. In addition, an independent sample T-test was conducted for a comparative analysis of each chain exercise posture according to the intensity of resistance. A one-way ANOVA and a Scheffe post-hoc test were also performed to analyze the contralateral leg's muscle activity according to the intensity of resistance in the closed and open chain exercise postures. Results: Results of the two-way ANOVA found that the gluteus medius and the biceps femoris had statistically significant differences in both the chain exercise postures and resistance intensity (p<0.05), and that the vastus medialis and the gastrocnemius did not exhibit statistically significant differences in the chain exercise postures (p>0.05) but showed statistically significant differences in resistance intensity (p<0.05). As a result of the independent sample T-test, the application of the PNF hip flexion-abduction-internal rotation pattern led to a statistically significant difference in the contralateral gluteus medius during the closed chain exercise posture (p<0.05). According to the results of the one-way ANOVA and the Scheffe post-analysis, statistically significant differences were observed in the gluteus medius at 50%, biceps femoris at 75%, vastus medialis at 100%, and gastrocnemius at 100% during the closed chain exercise posture based on a resistance intensity of 0% (p<0.05). In the open chain exercise posture, statistically significant differences were found in the gluteus medius at 50%, biceps femoris at 50%, and vastus medialis at 75% based on the resistance intensity of 0% (p<0.05). In the same posture, there was no significant difference in the gastrocnemius's resistance intensity (p>0.05). Conclusion: When the PNF leg pattern is applied, each muscle requires effective chain exercise postures and resistance intensity to generate the contralateral leg muscle's irradiation.

Interpretation of Deformation History and Paleostress Based on Fracture Analysis Exposed in a Trench (트렌치에서의 단열분석을 통해 도출한 단열발달사 및 고응력 해석: 울산 신암리의 예)

  • Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • The study area, located in Sinam-ri, Ulsan, in the southeastern part of the Korean Peninsula, is mainly composed of hornblende granite (ca. 65 Ma). Fracturing and reactivation of a fault striking ENE-WSW was strongly controlled by the intrusion of a mafic dyke (ca. 44 Ma), which behaves as a discontinuity in the mechanically homogeneous pluton, increasing the instability of the basement in this area. A geometric and kinematic study undertaken to interpret the faults and fractures was performed in a trench excavated almost perpendicular to the orientation of the dyke. The analysis of structural elements, such as dykes, veins, and faults, is used to infer the deformation history and to determine the paleostress orientations at the time of formation of the structures. The deformation history established based on this analysis is as follows: (1) NNE-SSW, E-W, ENE-WSW, and NE-SW trending fractures had already developed in the pluton before dyke intrusion; (2) felsic dykes intruded under conditions of σHmax oriented N-S and σHmin oriented E-W; (3) mafic dykes intruded under conditions of σHmax oriented E-W and σHmin oriented N-S; (4) dextral reactivation of the main fault associated with the development of hydrothermal quartz veins under conditions of σHmax oriented E-W and σHmin oriented N-S; (5) sinistral reactivation of the main fault and high-angle normal faults under conditions of σHmax oriented NE-SW and σHmin oriented NW-SE; and (6) dextral reactivation of the main fault and NE-SW low-angle reverse faults under conditions of σHmax oriented NW-SE and σHmin oriented NE-SW. These results are consistent with the tectonic history of the Pohang-Ulsan block in the southeastern part of the Korean Peninsula, and indicates the tectonic deformation of the southern area of the Ulsan fault bounded by Yangsan fault was analogous to that of the Pohang-Ulsan area from the Cenozoic. This work greatly aids the selection of sites for critical facilities to prevent potential earthquake hazards in this area.

Analysis of golf swing motion for specific properties of club shaft (클럽 샤프트(Club Shaft) 특성에 따른 골프 스윙(Golf Swing)동작 분석)

  • Kim, Sung-Il;Kim, Ky-Hyoung;Kim, Hyung-Soo;Lee, Hyun-Seob;Kim, Jin-Uk;Ahn, Chan-Gyu;Kim, Hee-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2002
  • The purpose of this study was to find the rational method to analyze golf swing with specific property of club shaft. Three subjects were filmed by two high speed digital cameras with 500 fps. The phase analyzed was downswing of each subject. The three-dimensional coordinates of the anatomical landmarks were obtained with motion analysis system Kwon3d 3.0 version and smoothed by lowpass digital filter with cutoff frequency 6Hz. From these data, kinematic and kinetic variables were calculated using Matlab(ver 5.0) The variables for this study were angular velocity and accelerations, which were calculated and following conclusions have been made : 1) Golf swing time of stiff club is faster than that of regular club. 2) In shoulder joint motion of swing with the stiff club, x-stiff showed mort rapid negative acceleration than that of regular club. 3) In regular club, the velocity of club head would be more effective velocity, which was increasing, than those of other clubs before impact. 4) In wrist joint motion of swing with stiff club, x-stiff club showed faster than regular club in the downswing and impact more rapid negative acceleration.

Analysis of the Lower Extremity's Coupling Angles During Forward and Backward Running (앞으로 달리기와 뒤로 달리기 시 하지 커플링각 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.149-163
    • /
    • 2006
  • The purpose of this study was to compare the lower extremity's joint and segment coupling patterns between forward and backward running in subjects who were twelve healthy males. Three-dimensional kinematic data were collected with Qualisys system while subjects ran to forward and backward. The thigh internal/external rotation and tibia internal/external rotation, thigh flexion/extension and tibia flexion/extension, tibia internal/external rotation and foot inversion/eversion, knee internal/external rotation and ankle inversion/eversion, knee flexion/extension and ankle inversion/eversion, knee flexion/extension and ankle flexion/extension, and knee flexion/extension and tibia internal/external rotation coupling patterns were determined using a vector coding technique. The comparison for each coupling between forward and backward running were conducted using a dependent, two-tailed t-test at a significant level of .05 for the mean of each of five stride regions, midstance(1l-30%), toe-off(31-50%), swing acceleration(51-70%), swing deceleration(71-90), and heel-strike(91-10%), respectively. 1. The knee flexion/extension and ankle flexion/extension coupling pattern of both foreward and backward running over the stride was converged on a complete coordination. However, the ankle flexion/extension to knee flexion/extension was relatively greater at heel-strike in backward running compared with forward running. At the swing deceleration, backward running was dominantly led by the ankle flexion/extension, but forward running done by the knee flexion/extension. 2. The knee flexion/extension and ankle inversion/eversion coupling pattern for both running was also converged on a complete coordination. At the mid-stance. the ankle movement in the frontal plane was large during forward running, but the knee movement in the sagital plane was large during backward running and vice versa at the swing deceleration. 3. The knee flexion/extension and tibia internal/external rotation coupling while forward and backward run was also centered on the angle of 45 degrees, which indicate a complete coordination. However, tibia internal/external rotation dominated the knee flexion/extension at heel strike phase in forward running and vice versa in backward running. It was diametrically opposed to the swing deceleration for each running. 4. Both running was governed by the ankle movement in the frontal plane across the stride cycle within the knee internal/external rotation and tibia internal/external rotation. The knee internal/external rotation of backward running was greater than that of forward running at the swing deceleration. 5. The tibia internal/external rotation in coupling between the tibia internal/external rotation and foot inversion/eversion was relatively great compared with the foot inversion/eversion over a stride for both running. At heel strike, the tibia internal/external rotation of backward running was shown greater than that of forward(p<.05). 6. The thigh internal/external rotation took the lead for both running in the thigh internal/external rotation and tibia internal/external rotation coupling. In comparison of phase, the thigh internal/external rotation movement at the swing acceleration phase in backward running worked greater in comparison with forward running(p<.05). However, it was greater at the swing deceleration in forward running(p<.05). 7. With the exception of the swing deceleration phase in forward running, the tibia flexion/extension surpassed the thigh flexion/extension across the stride cycle in both running. Analysis of the specific stride phases revealed the forward running had greater tibia flexion/extension movement at the heel strike than backward running(p<.05). In addition, the thigh flexion/extension and tibia flexion/extension coupling displayed almost coordination at the heel strike phase in backward running. On the other hand the thigh flexion/extension of forward running at the swing deceleration phase was greater than the tibia flexion/extension, but it was opposite from backward running. In summary, coupling which were the knee flexion/extension and ankle flexion/extension, the knee flexion/extension and ankle inversion/eversion, the knee internal/external rotation and ankle inversion/eversion, the tibia internal/external rotation and foot inversion/eversion, the thigh internal/external rotation and tibia internal/external rotation, and the thigh flexion/extension and tibia flexion/extension patterns were most similar across the strike cycle in both running, but it showed that coupling patterns in the specific stride phases were different from average point of view between two running types.

The Kinematic Analysis of Jumeok Jireugi in Taekwondo of Security Martial Arts (경호무도의 태권도 주먹 지르기 동작 운동학적 분석)

  • Lee, See-Hwan;Yang, Young-Mo
    • Korean Security Journal
    • /
    • no.31
    • /
    • pp.187-207
    • /
    • 2012
  • The purpose of this study was to analyze the punching movement at the horseback riding stance, one of the basic movements in Taekwondo, with 3D images and further the kinetic variables such as time, velocity, angle, angular velocity, and angular acceleration according to the types. It also aimed to examine the characteristics of each type and suggest instructional methods for the right punching movement. For those purposes, three members from the College Taekwondo Poomse Demonstration Squad were put to the test. The research findings led to the following conclusions: 1. Performance Time of the Punching Movement : In Section 1, Type 1 and 2 recorded $0.24{\pm}0.07s$ and $0.42{\pm}0.08s$, respectively, for the punching movement at the horseback riding stance. While Type 1 took less performance time in the punching movement, Type 2 took less time for take back according to each section's percentage in the total performance time. 2. Variables of Linear Velocity and Linear Acceleration : Each type recorded different linear velocity for each aspect, but the highest linear velocity represented the moment of impact for each type. Type 2 recorded the highest linear velocity in Aspect 4, which was the moment of impact. 3. Variable of Joint Angle : There were no big outer differences in the joint angle during the punching movement between Type 1 in the aspect of impact and Type 2, but the individuals assumed dynamic positions in the punching movement of Type 2 with more diverse changes to the joint angle. 4. Variables of Angular Velocity and Angular Acceleration During the punching movement of Type 1, the Aspect 3 in the moment of impact recorded angular velocity of $0.79{\pm}0.02deg/s$, $0.91{\pm}0.04deg/s$, and $5.24{\pm}0.09deg/s$ at the pelvis, shoulder, and wrist respectively. During the punching movement of Type 2, the Aspect 3 in the moment of impact recorded angular velocity of $1.32{\pm}0.03deg/s$, $0.21{\pm}0.03deg/s$, and $4.98{\pm}0.08deg/$ at the shoulder, wrist, and pelvis, respectively. In the Aspect 3 in the moment of impact in Type 2, the angular acceleration at the right wrist joint was $176.24{\pm}1.11deg/s^2$, which was bigger than that in the moment of impact in Type 1.

  • PDF

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

A Retrospective Analysis of the Relationship Between Rotator Cuff Tear and Biceps Lesion (후하방 회전근 개 파열과 상완이두박근 장두건 병변과의 연관 관계에 대한 후향적 분석)

  • Seo, Seung-Suk;Kim, Jung-Han;Choi, Jang-Seok;Kim, Jeon-Gyo
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: Not much is known about the obvious relationship between posteroinferior rotator cuff tear and biceps lesion. The purpose of this study is to analyze the effect of posteroinferior rotator cuff tear on a biceps lesions by comparing the rotator cuff tear and biceps lesions with the number of cuff tears and the degree of degeneration of the rotator cuff. Materials and Methods: 65 patients who underwent surgery for a posteroinferior rotator cuff tear from 2002 to 2009 were included as subjects. The study determined the factors (the number of cuff tears and the degree of degeneration as assessed by MRI) that affected biceps lesions and the kinematic stability of the rotator cuff. Results: Biceps lesion was noted 11 patients among the 51 patients with supraspinatus tendon tears and in 8 patients among the 14 patients with supraspinatus, infraspinatus or teres minor tendon tears, and there was a statistically significant difference between those two groups (p=0.0095). The number of cuff tears was proportional to biceps lesion with statistical significance (p=0.0095). Among the biceps lesions, SLAP II lesion showed a statistically different distribution according to the number of cuff tears (p=0.0073). The degeneration factors (Goutallier's classification and the tangent sign) had no correlations with biceps lesion. Conclusion: Posterosuperior cuff tear may affect biceps lesion. Especially, the number of cuff tears has a close relationship, but the degenerative indicators have no relationship with biceps lesion.

Formation and Evolution of the Miocene Ipcheon Subbasin in Yangbuk-myeon, Gyeongju, SE Korea (한반도 남동부 경주시 양북면 마이오세 입천소분지의 형성과 발달사)

  • Seong, Changhun;Cheon, Youngbeom;Son, Moon;Sohn, Young Kwan;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The Ipcheon Subbasin is an isolated Miocene basin in SE Korea, which has the geometry of an asymmetric graben elongated in the NE-SW direction. It is in contact with basement rocks by faults and separated from adjacent Waup and Eoil basins by the basement. The strata of the basin fills have an overall homoclinal structure, dipping toward NW or WNW. The basin fills consist of Early Miocene sediments rich in dacitic volcanic and volcaniclastic deposits and Middle Miocene non-volcanic and nonmarine conglomerates intercalated with sand layers, which are distributed in the northeastern and southwestern parts of the basin, respectively. Kinematic analysis of syndepositional conjugate faults in the basin fills indicates WNW-ESE extension of the basin. These features are very similar to those of the adjacent Waup and Eoil basins, indicating that the basin extension was governed by the NE-trending northwestern border faults and that the basin experienced a propagating rifting from NE to SW. Basaltic materials, which occur abundantly in the Eoil Basin, are totally absent in the Ipcheon Subbasin. The observations of the dacitic tuff and tuffaceous mudstone in the subbasin, on slabs and under microscope, suggest that they have lithologies very similar to those of the Yondongri Tuff in the Waup Basin. The Middle Miocene non-volcanic sediments of the Waup and Eoil basins and the Ipcheon Subbasin are distributed consistently in the southwestern part of each basin. It is thus concluded that the extension of the Ipcheon Subbasin began at about 22 Ma together with the Waup Basin and was lulled during the main extension period of the Eoil Basin between 20-18 Ma. At about 17 Ma, the subbasin was re-extended due to the activation of the Yeonil Tectonic Line associated with the propagating rifting toward SW. This event is interpreted to have provided new sedimentation space for the Middle Miocene sediments in the southwestern parts of the Waup and Eoil basins and the Ipcheon Subbasin as well.

Synthesis and Lubricating Properties of Succinic Acid Alkyl Ester Derivatives (숙신산 알킬 에스테르 유도체의 합성 및 윤활특성)

  • Baek, Seung-Yeob;Kim, Young-Wun;Chung, Keun-Wo;Yoo, Seung-Hyun;Park, Su-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.196-202
    • /
    • 2011
  • In this paper, a series of alkyl succinic acid esters for base oil were synthesized by condensation reaction of succinic anhydride and fatty alcohol. The structures of the synthesized esters were confirmed by $^1H-NMR$, FT-IR spectrum and GC analysis. Basic properties of esters such as kinematic viscosity (KV), refractive index (RI), total acid number (TAN) and pour points were measured and lubricating properties such as SRV wear scar diameter (SRV WSD), fraction coefficient (COF) and 4-ball wear (4-ball WSD) were also evaluated. As the results of basic properties, KV, RI and pour point of synthetic esters increased as the carbon chain of the esters increased. Measurement value of total acid number (TAN) was indicated between 0.2~4 mgKOH/g, and that metal working fluids and pressure working oils are acceptable to use as base oil. Also, lubricating properties of the esters showed as follows: 0.391~0.689 mm of SRV WSD, 0.110~0.138 of SRV COF and 0.49~0.55 mm of 4-ball WSD depended on the structure of the esters. In a comparison on the lubrication capacity of the SRV test based on polyester TMPTO, SRV WSD result showed that a better performance caused by the alkyl group. On the other hand, SRV COF test was not influenced of the alkyl group which the capacity of the lubricant was sightly diminished than the comparison material, regardless of the alkyl group.