• 제목/요약/키워드: KIF5A

검색결과 29건 처리시간 0.028초

Kinesin superfamily member 15 knockdown inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma

  • Yi Cai;Qianyue Lai;Xuan Zhang;Yu Zhang;Man Zhang;Shaoju Gu;Yuan Qin;Jingshen Hou;Li Zhao
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.457-470
    • /
    • 2023
  • The aim of this study was to investigate the role of kinesin superfamily member 15 (KIF15) in nasopharyngeal carcinogenesis (NPC) and explore its underlying mechanisms. We employed various assays, including the CCK-8 assay, flow cytometry, the Transwell and scratch assay, Western blotting, and nude mice transplantation tumor, to investigate the impact of KIF15 on NPC. Our findings demonstrate that KIF15 plays a critical role in the proliferation, apoptosis, migration, and invasion of NPC cells. Furthermore, we discovered that silencing KIF15 inhibits cell proliferation, migration, and invasion while promoting apoptosis, and that KIF15's effect on NPC cell growth is mediated through the PI3K/AKT and P53 signaling pathways. Additionally, we showed that KIF15 promotes nasopharyngeal cancer cell growth in vivo. Our study sheds light on the significance of KIF15 in NPC by revealing that KIF15 knockdown inhibits NPC cell growth through the regulation of AKT-related signaling pathways. These findings suggest that KIF15 represents a promising therapeutic target for the prevention and treatment of NPC.

The KIF1B (rs17401966) Single Nucleotide Polymorphism is not Associated with the Development of HBV-related Hepatocellular Carcinoma in Thai Patients

  • Sopipong, Watanyoo;Tangkijvanich, Pisit;Payungporn, Sunchai;Posuwan, Nawarat;Poovorawan, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2865-2869
    • /
    • 2013
  • Hepatitis B virus (HBV) infection can become chronic and if left untreated can progress to hepatocellular carcinoma (HCC).Thailand is endemic for HBV and HCC is one of the top five cancers, causing deaths among Thai HBV-infected males. A single nucleotide polymorphism (SNP) at the KIF1B gene locus, rs17401966, has been shown to be strongly associated with the development of HBV-related HCC. However, there are no Thai data on genotypic distribution and allele frequencies of rs17401966. Thai HBV patients seropositive for HBsAg (n=398) were therefore divided into two groups: a case group (chronic HBV with HCC; n=202) and a control group (HBV carriers without HCC; n=196). rs17401966 was amplified by polymerase chain reaction (PCR) and analyzed by direct nucleotide sequencing. The genotypic distribution of rs174019660 for homozygous major genotype (AA), heterozygous minor genotype (AG) and homozygous minor genotype (GG) in the case group was 49.5% (n=100), 40.1% (n=81) and 10.4% (n=21), respectively, and in controls was 49.5% (n=97), 42.3% (n=83) and 8.2% (n=16). Binary logistic regression showed that rs17401966 was not statistically associated with the risk of HCC development in Thai chronic HBV patients (p-value=0.998, OR=1.00 and 95% CI=0.68-1.48). In conclusion, the KIF1B gene SNP (rs174019660) investigated in this study showed no significant association with HBV-related HCC in Thai patients infected with HBV, indicating that there must be other mechanisms or pathways involved in the development of HCC.

Deficiency of Anoctamin 5/TMEM16E causes nuclear positioning defect and impairs Ca2+ signaling of differentiated C2C12 myotubes

  • Phuong, Tam Thi Thanh;An, Jieun;Park, Sun Hwa;Kim, Ami;Choi, Hyun Bin;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권6호
    • /
    • pp.539-547
    • /
    • 2019
  • Anoctamin 5 (ANO5)/TMEM16E belongs to a member of the ANO/TMEM16 family member of anion channels. However, it is a matter of debate whether ANO5 functions as a genuine plasma membrane chloride channel. It has been recognized that mutations in the ANO5 gene cause many skeletal muscle diseases such as limb girdle muscular dystrophy type 2L (LGMD2L) and Miyoshi muscular dystrophy type 3 (MMD3) in human. However, the molecular mechanisms of the skeletal myopathies caused by ANO5 defects are poorly understood. To understand the role of ANO5 in skeletal muscle development and function, we silenced the ANO5 gene in C2C12 myoblasts and evaluated whether it impairs myogenesis and myotube function. ANO5 knockdown (ANO5-KD) by shRNA resulted in clustered or aggregated nuclei at the body of myotubes without affecting differentiation or myotube formation. Nuclear positioning defect of ANO5-KD myotubes was accompanied with reduced expression of Kif5b protein, a kinesin-related motor protein that controls nuclear transport during myogenesis. ANO5-KD impaired depolarization-induced $[Ca2^{+}]_i$ transient and reduced sarcoplasmic reticulum (SR) $Ca^{2+}$ storage. ANO5-KD resulted in reduced protein expression of the dihydropyridine receptor (DHPR) and SR $Ca^{2+}-ATPase$ subtype 1. In addition, ANO5-KD compromised co-localization between DHPR and ryanodine receptor subtype 1. It is concluded that ANO5-KD causes nuclear positioning defect by reduction of Kif5b expression, and compromises $Ca^{2+}$ signaling by downregulating the expression of DHPR and SERCA proteins.

Kinesin Light Chain 1 (KLC1)의 Tetratricopeptide Repeat (TPR) 도메인과 Rab effector, EHBP1L1의 결합 (Rab Effector EHBP1L1 Associates with the Tetratricopeptide Repeat Domain of Kinesin Light Chain 1)

  • 정영주;박성우;김상진;김무성;엄상화;이정구;석대현
    • 생명과학회지
    • /
    • 제30권1호
    • /
    • pp.10-17
    • /
    • 2020
  • Kinesin 1은 미세소관을 따라 plus말단으로 이동하는 모터단백질로 세포내 물질 수송에 관여한다. Kinesin 1은 경쇄단위체(light chain subunit)를 통하여 운반체들인, 세포내 소기관, 다양한 소포체, 신경전달물질 수용체 단백질, 세포신호전달 단백질과 여러 단백질 복합체들과 결합하여 운반하는 kinesin superfamily protein (KIFs)의 한 종류이다. Kinesin light chains 1 (KLC1)은 모터 기능이 없는 단위체로서 kinesin heavy chain (KHC)과 결합한다. KLC1은 다양한 매개단백질들과 결합하지만 아직 결합하는 매개단백질이 충분히 밝혀지지 않았다. 본 연구에서는 KLC1의 tetratricopeptide repeat (TPR) 영역과 결합하는 단백질을 분리하기 위하여 효모 two-hybrid 탐색한 결과 EH domain-binding protein 1-like 1 (EHBP1L1) 을 분리하였다. EHBP1L1은 KLC1의 TPR 영역을 포함한 부위와 결합하지만 KIF5B (kinesin 1의 모터 단백질)과 KIF3A (kinesin 2의 모터 단백질)와는 결합하지 않았다. 또한 KLC1은 EHBP1L1의 C-말단에 존재하는 coiled-coil 도메인과 결합하였으며, 다른 EHBP1L1의 isoform인 EHBP1과는 결합하지 않았다. KLC1은 GST와는 결합하지 않지만 GST-EHBP1L1과 GST-EHBP1L1-coiled-coil domain과는 결합하였다. HEK-293T세포에 EHBP1L1과 KLC1을 동시에 발현시켰을 때 두 단백질은 세포 내에서 같은 부위에 존재하며, EHBP1L1을 면역침강한 결과 KLC1뿐만 아니라 KIF5B와도 같이 침강함을 확인하였다. 이러한 결과들은 kinesin 1은 EHBP1L1이 결합한 운반체를 수송함을 시사한다.

Associations for whole-exome sequencing profiling with carcass traits in crossbred pigs

  • Jae Young, Yoo;Sang-Mo, Kim;Dong Hyun, Lee;Gye-Woong, Kim;Jong-Young, Lee
    • 농업과학연구
    • /
    • 제49권3호
    • /
    • pp.595-606
    • /
    • 2022
  • Industrial pig breeding has used the Duroc breed and terminal sires in a three-way crossbred system in Korea. This study identified the gene variation patterns related to carcass quality in crossbred pigs ([Landrace × Yorkshire] × Duroc) using whole-exome sequencing (WES). This study used crossbred pigs and divided them into two groups (first plus grade, n = 5; second grade, n = 5). Genomic DNA samples extracted from the loin muscles of both groups were submitted for WES. A set of validated single-nucleotide polymorphisms (SNPs: n = 102) were also subjected to the Kompetitive allele-specific polymerase chain reaction (KASP) to confirm the WES results in the loin muscles. Based on the WES, SNPs associated with meat quality were found on chromosomes 5, 10, and 15. We identified variations in three of the candidate genes, including kinesin family member 5B (KIF5B), GLI family zinc finger 2 (GLI2), and KIF26B, that were associated with meat color, marbling score, and backfat thickness. These genes were associated with meat quality and the mitogen-activated protein kinase (MAPK) and Hedgehog (Hh) signaling pathways in the crossbred pigs. These results may help clarify the mechanisms underlying high-quality meat in pigs.

카드뮴이 흰쥐 뇌기저핵의 유전자 발현에 미치는 영향 (Effects of Cadmium on the Gene Expression Profile in the Rat Basal Ganglia)

  • 이채관
    • 한국산업보건학회지
    • /
    • 제20권1호
    • /
    • pp.29-40
    • /
    • 2010
  • This study was aimed at investigating the gene expression profile in basal ganglia of cadmium exposed rat based on cDNA array analysis. For cDNA array analysis, adult Sprague-Dawley male rats (350 ${\pm}$ 25 g) were intraperitoneally injected with 2.0 mg/kg body weight/day of CdCl2 (0.3 ml) for 5 days. For doserelated gene expression analysis rats were intraperitoneally injected with 0.0, 0.1, 0.3, 1.0 mg/kg body weight/day of CdCl$_2$ for 5 days. Control rats were injected with equal volume of saline. Cadmium concentration of brain was analyzed by atomic absorption spectrophotometer. For cDNA array, RNA samples were extracted from basal ganglia and reverse-transcribed in the presence of [${\alpha}$32P]-dATP. Membrane sets of the Atlas Rat 1.2 array II and Toxicology array 1.2 (Clontech, Palo Alto, CA) were hybridized with cDNA probe sets. RT-PCR was employed to validate the relative gene expression patterns obtained from the cDNA array. Northern blot hybridization methods were employed to assess the dose-related gene expression. Among the 2352 cDNAs, 671 genes were detected in both array sets and 63 genes of 38 classes showed significant (more than two fold) changes in expression. Thirty five of these genes were up-regulated and twenty eight were down-regulated in the cadmium exposed group. According to the dose-related gene expression analysis, heat shock 27 kDa protein (HSP27), neurodegeneration-associated protein 1 (Neurodap 1) genes were significantly up-regulated and melatonin receptor 1a (Mel1a), Kinesin family member 3C (KIF3C), novel kinesinrelated protein (KIF1D) genes were significantly downregulated even in the low-dose of cadmium exposed group (0.1 mg/kg body weight/day). Conclusions Sixty three genes detected in this study can give some more useful informations about the cadmium-induced neurotoxicity in the basal ganglia. As well as, HSP27, Neurodap1, Mel1a, KIF3C and KIF1D genes may be useful for the study of the cadmium-induced neurotoxicity because these genes showed dramatic changes of mRNA levels in response to the low dose of cadmium exposure.

Development of Research into Autophagic Lysosome Reformation

  • Chen, Yang;Yu, Li
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.45-49
    • /
    • 2018
  • Autophagy is a lysosome-dependent degradation process that is essential for maintaining cellular homeostasis. In recent years, more studies have focused on the late stages of autophagy. Our group discovered and studied the terminal step of autophagy, namely autophagic lysosome reformation (ALR). ALR is the process that regenerates functional lysosomes from autolysosomes, thus maintaining lysosome homeostasis. ALR involves clathrin-mediated membrane budding from autolysosomes, elongation of membrane tubules along microtubules with the pulling force provided by the motor protein KIF5B, proto-lysosome scission by dynamin 2, and finally maturation of proto-lysosomes to functional lysosomes. In this review, we will summarize progress in unveiling the molecular mechanisms underlying ALR and its potential pathophysiological roles.

Gene Expression Analysis of Hepatic Response Induced by Gentamicin in Mice

  • Oh, Jung-Hwa;Park, Han-Jin;Hwang, Ji-Yoon;Jeong, Sun-Young;Lim, Jung-Sun;Kim, Yong-Bum;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제3권1호
    • /
    • pp.60-67
    • /
    • 2007
  • Gentamicin is a broad-spectrum aminoglycoside antibiotic used in the treatment of bacterial infection. Although side effects of gentamicin such as nephrotoxicity and ototoxicity have been investigated, the information on the hepatic effects of gentamicin is still limited. In the present study, gene expression profiles were analyzed in the liver of gentamicin treated mice using Affymetrix GeneChip$^{(R)}$ Mouse Expression 430A 2.0 Array. Totally, 400 genes were identified as being either up- or down-regulated over 1.5-fold changes (P<0.01) in the liver of gentamicin treated mice. Among these deregulated genes, 16 up-regulated genes mainly involved in transport (Kif5b, Pex14, Rab14, Clcn3, and Necap1) and 20 down-regulated genes involved in lipid and other metabolisms (Hdlbp, Gm2a, Uroc1, and Dak) were selected using k-means clustering algorithm. The functional classification of differentially expressed genes represented that several stress-related genes were regulated in the liver by gentamicin treatment. This data may contribute in understanding the molecular mechanism in the liver of gentamicin treated mice.

Identification of Differentially-Methylated Genes and Pathways in Patients with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Kim, Bong Jun;Youn, Dong Hyuk;Chang, In Bok;Kang, Keunsoo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권1호
    • /
    • pp.4-12
    • /
    • 2022
  • Objective : We reported the differentially methylated genes in patients with subarachnoid hemorrhage (SAH) using bioinformatics analyses to explore the biological characteristics of the development of delayed cerebral ischemia (DCI). Methods : DNA methylation profiles obtained from 40 SAH patients from an epigenome-wide association study were analyzed. Functional enrichment analysis, protein-protein interaction (PPI) network, and module analyses were carried out. Results : A total of 13 patients (32.5%) experienced DCI during the follow-up. In total, we categorized the genes into the two groups of hypermethylation (n=910) and hypomethylation (n=870). The hypermethylated genes referred to biological processes of organic cyclic compound biosynthesis, nucleobase-containing compound biosynthesis, heterocycle biosynthesis, aromatic compound biosynthesis and cellular nitrogen compound biosynthesis. The hypomethylated genes referred to biological processes of carbohydrate metabolism, the regulation of cell size, and the detection of a stimulus, and molecular functions of amylase activity, and hydrolase activity. Based on PPI network and module analysis, three hypermethylation modules were mainly associated with antigen-processing, Golgi-to-ER retrograde transport, and G alpha (i) signaling events, and two hypomethylation modules were associated with post-translational protein phosphorylation and the regulation of natural killer cell chemotaxis. VHL, KIF3A, KIFAP3, RACGAP1, and OPRM1 were identified as hub genes for hypermethylation, and ALB and IL5 as hub genes for hypomethylation. Conclusion : This study provided novel insights into DCI pathogenesis following SAH. Differently methylated hub genes can be useful biomarkers for the accurate DCI diagnosis.