• Title/Summary/Keyword: KF post deposition treatment

Search Result 4, Processing Time 0.016 seconds

KF Post Deposition Treatment Process of Cu(In,Ga)Se2 Thin Film Effect of the Na Element Present in the Solar Cell Performance (KF 후열처리 공정시 CIGS 박막의 Na 원소 존재가 태양전지 셀성능에 미치는 영향)

  • Son, Yu-Seung;Kim, Won Mok;Park, Jong-Keuk;Jeong, Jeung-hyun
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.130-134
    • /
    • 2015
  • The high efficiency cell research processes through the KF post deposition treatment (PDT) of the $Cu(In,Ga)Se_2(CIGS)$ thin film has been very actively progress. In this study, it CIGS thin film deposition process when KF PDT 300 to the processing temperature, 350, $400^{\circ}C$ changed to soda-lime glass (SLG) efficiency of the CIGS thin film characteristics, and solar cell according to Na presence of diffusion from the substrate the effects were analyzed. As a result, the lower the temperature of KF PDT and serves to interrupt the flow of current K-CIGS layer is not removed from the reaction surface, FF and photocurrent is decreased significantly. Blocking of the Na diffusion from the glass substrate is significantly increased while the optical voltage, photocurrent and FF is a low temperature (300, $350^{\circ}C$) in the greatly reduced, and in $400^{\circ}C$ tend to reduce fine. It is the presence of Na in CIGS thin film by electron-induced degradation of the microstructure of CIGS thin film is expected to have a significant impact on increasing the hole recombination rate a reaction layer is formed of the K elements in the CIGS thin film surface.

Effect of KF Treatment of Cu(In,Ga)Se2 Thin Films on the Photovoltaic Properties of CIGS Solar Cells (Cu(In,Ga)Se2 박막의 KF 처리가 CIGS태양전지에 미치는 영향)

  • Jeong, Gwang Sun;Cha, Eun Seok;Moon, Sun Hong;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.65-70
    • /
    • 2015
  • We applied KF on CIGS film to modify CIGS surface with a wider-bandgap surface layer. With the KF deposition the surface of CIGS film had fine particle on the CIGS surface at 350 and $300^{\circ}C$. No fine particle was detected at 500 and $250^{\circ}C$. With the KF treatment, the Ga and O content increased at the surface, while the In and Cu content decreased. The valence band maximum was lowered with KF treatment. The composition profile and band structure were positive side of applying KF on the CIGS surface. However, the efficiency decreased with the KF treatment due to high series resistance, probably due to too thick surface layer. A smaller amount of KF should be supplied and more systematic analysis is necessary to obtain a reproducible higher efficiency CIGS solar cells.

Performance Variation of Cu(In,Ga)Se2 Photovoltaic Absorber Post-deposition Treated with Different KF Thickness (다양한 두께의 KF로 후증착열처리된 Cu(In,Ga)Se2 광흡수층의 태양전지 성능 변화)

  • Bae, Jin A;Song, Yu Jin;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.56-61
    • /
    • 2018
  • In this study, CIGS absorber layers were deposited on low-alkali glass and sodalime glass substrates and potasium floride (KF) of various thicknesses was supplied at an elevated temperature after the CIGS growth. The effect of KF post-deposition treatment on the two types of substrates was extremely different. On the low-alkali substrate, the open-circuit voltage (Voc) was improved but the fill-factor (FF) degradation was severe, whereas the sodalime substrate showed Voc deterioration and FF improvement. In the case of supplying 20 nm of KF on both substrates, the efficiency gain of 0.3~1.1%p was obtained. With increasing the KF thickness, a small protrusion-like microstructure developed on the surface of the absorber layer, and the microstructures that were not removed in the subsequent process were found to be the main cause of the FF loss.

Preparation Technique of Foam-Floater to Level Gauge of LPG Tank with High Pressure (LPG 고압탱크 레벨 게이지(Level Gauge)용 발포부표 제조 기술)

  • Kim, Byoung-Sik;Hong, Joo-Hee;Chung, Yongjae;Heo, Kwang-Beom
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The purpose of this study is to invent the preparation technique of the foam-floater used as a level gauge of liquefied petroleum gas (LPG) tank under high pressure, which has not only closed pores but also has under 5 wt% changingrate in case of depositing 72 h in room-temperature LPG. In pressure-resistance and deposition experiment, the prepared foam-floaters with different sulfur (325 Mesh and 400 Mesh) and foaming agent (dinitrosopentamethylenetetramin; DPT and azodicarbonamide; AC) had a marginal difference in its weight changing-rate. However, the prepared floater with sulfur 400 Mesh and the foaming agent AC had smaller pores and higher closed pore-rate. Under $50kg_f/cm^3$ hydraulic pressure, the floater with medium thermal (MT) carbon showed a lower weight changing-rate than semi reinforcing furnace (SRF) carbon. Providing a post-treatment to the prepared floater, the hardness and the pressure-resistance of the inner pore-wall of floater were increased. Prepared floaters having a specific gravity below 0.30 were distorted and broken, and other floaters with a specific gravity above 0.35 were not useful as a floater because of the low buoyancy. Therefore, it was considered that the floaters with a specific gravity between 0.3~0.35 are the most useful as a floater under $50kg_f/cm^3$ pressure-resistance.