• Title/Summary/Keyword: KF/MgO

Search Result 6, Processing Time 0.018 seconds

Decomposition of Dibenzothiophene Sulfone over KF/MgO Catalysts (KF/MgO 촉매를 이용한 Dibenzothiophene Sulfone 분해반응)

  • Kim, Hyeon-Joo;Jeong, Kwang-Eun;Jeong, Soon-Yong;Park, Young-Kwon;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • The object of the present study is to apply KF/MgO catalysts to remove sulfur dioxide from dibenzothiophene sulfone, a by-product of oxidative desulfurization. Potassium fluoride was deposited via an impregnation method on MgO. The effects KF loading and calcination on the characteristics of the KF/MgO catalysts were investigated through the BET surface area, XRF, XRD, and temperature-programmed desorption of $CO_2$. The catalytic performances of the samples were investigated during the decomposition of dibenzothiophene sulfone to biphenyl and sulfur dioxide gas. KF loaded on MgO prepared by the impregnation method showed high catalytic activities for the decomposition of dibenzothiophene sulfone. The higher activity of KF/MgO just dried at 373 K, avoiding the usual activation at high temperature, than that over the calcined catalyst is ascribed to increase of the amount of basic sites. The high basicity probably may be due to the coordinately unsaturated $F^-$. The simply dried 10 % KF/MgO catalyst, without the usual activation at high temperature, showed the optimal catalytic properties.

Transesterification Reaction of Soybean Oil over KF/MgO Catalyst (KF/MgO 촉매를 이용한 대두유의 전이에스테르화 반응)

  • Jo, Yongbeom;Jeon, Jong-Ki;Park, Sung Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.344-347
    • /
    • 2012
  • The basic strength of the MgO catalyst was enhanced by impregnating it with KF to synthesize a highly active catalyst for the bio-diesel production. To increase basicity, KF impregnated on synthesized MgO in laboratory. The synthesized catalyst was characterized using $N_2$ adsorption-desorption, X-Ray diffraction, X-Ray fluorescence, and $CO_2$ temperature programmed desorption analyses. Bio-diesel was produced from soybean and methanol and its fatty acid methyl ester content was measured to evaluate the activity of the catalyst. The catalyst impregnated with 30 wt% KF exhibited the highest activity, which was attributed to its abundant intermediate base site.

Influence of Electrolytic KF on the Uniform Thickness of Oxide Layers Formed on AZ91 Mg Alloy by Plasma Electrolytic Oxidation

  • Song, Duck-Hyun;Lim, Dae-Young;Fedorov, Vladimir;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.495-500
    • /
    • 2017
  • Oxide layers were formed by an environmentally friendly plasma electrolytic oxidation (PEO) process on AZ91 Mg alloy. PEO treatment also resulted in strong adhesion between the oxide layer and the substrate. The influence of the KF electrolytic solution and the structure, composition, microstructure, and micro-hardness properties of the oxide layer were investigated. It was found that the addition of KF instead of KOH to the $Na_2SiO_3$ electrolytic solution increased the electrical conductivity. The oxide layers were mainly composed of MgO and $Mg_2SiO_4$ phases. The oxide layers exhibited solidification particles and pancake-shaped oxide melting. The pore size and surface roughness of the oxide layer decreased considerably with an increase in the concentration of KF, while densification of the oxide layers increased. It is shown that the addition of KF to the basis electrolyte resulted in fabricating of an oxide layer with higher surface hardness and smoother surface roughness on Mg alloys by the PEO process. The uniform thickness of the oxide layer formed on the Mg alloy substrates was largely determined by the electrolytic solution with KF, which suggests that the composition of the electrolytic solution is one of the key factors controlling the uniform thickness of the oxide layer.

Effect of Plasma Electrolytic Oxidation Conditions on Oxide Coatings Properties of Die-Cast AZ91D Mg Alloy (플라즈마 전해 산화 처리조건에 따른 다이캐스트 AZ91D Mg 합금 위에 제조된 산화피막 특성)

  • Park, Seong-Jun;Lim, Dae-Young;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.609-616
    • /
    • 2019
  • Oxide coatings are formed on die-cast AZ91D Mg alloy through an environmentally friendly plasma electrolytic oxidation(PEO) process using an electrolytic solution of $NaAlO_2$, KOH, and KF. The effects of PEO condition with different duty cycles (10 %, 20 %, and 40 %) and frequencies(500 Hz, 1,000 Hz, and 2,000 Hz) on the crystal phase, composition, microstructure, and micro-hardness properties of the oxide coatings are investigated. The oxide coatings on die-cast AZ91D Mg alloy mainly consist of MgO and $MgAl_2O_4$ phases. The proportion of each crystalline phase depends on various electrical parameters, such as duty cycle and frequency. The surfaces of oxide coatings exhibit as craters of pancake-shaped oxide melting and solidification particles. The pore size and surface roughness of the oxide coating increase considerably with increase in the number of duty cycles, while the densification and thickness of oxide coatings increase progressively. Differences in the growth mechanism may be attributed to differences in oxide growth during PEO treatment that occur because the applied operating voltage is insufficient to reach breakdown voltage at higher frequencies. PEO treatment also results in the oxide coating having strong adhesion properties on the Mg alloy. The micro-hardness at the cross-section of oxide coatings is much higher not only compared to that on the surface but also compared to that of the conventional anodizing oxide coatings. The oxide coatings are found to improve the micro-hardness with the increase in the number of duty cycles, which suggests that various electrical parameters, such as duty cycle and frequency, are among the key factors controlling the structural and physical properties of the oxide coating.

A Study on Reforming Reaction for Preparation of Synthesis Gas from Land-Fill Gas (매립지가스(LFG)로부터 합성가스 제조를 위한 개질반응 연구)

  • Cho, Wooksang;Yoon, Jungsup;Park, Sunggyu;Mo, Yongki;Baek, Youngsoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.570-576
    • /
    • 2014
  • LFG (Land-Fill Gas) includes components of $CH_4$, $CO_2$, $O_2$, $N_2$, and water. The preparation of synthesis gas from LFG as a DME (Dimethyl Ether) feedstock was studied by methane reforming of $CO_2$, $O_2$ and steam over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Our experiments were performed to investigate the effects of methane conversion and syngas ratio on the amount of LFG components over NiO-MgO-$CeO_2$/$Al_2O_3$ catalyst. Results were obtained through the activity reaction experiments at the temperature of $900^{\circ}C$ and GHSV of 4,000. The results were as following; it has generally shown that methane conversion rate increased with the increase of oxygen and carbon dioxide amounts. Highly methane conversion of 92~93% and syngas ratio of approximately 1.0 were obtained in the feed of gas composition flow-rate of 243ml/min of $CH_4$, 241ml/min of $CO_2$, 195ml/min of $O_2$, 48ml/min of $N_2$, and 360ml/min of water, respectively, under reactor pressure of 15 bar for 50 hrs of reaction time. Also, it was shown that catalyst deactivation by coke formation was reduced by excessively adding oxygen and steam as an oxidizer of the methane reforming.

Effect of Fluorides on Mullitization of $SiO_2-Al_2O_3$ System; Korean Kaolin (플루오르화물이 $SiO_2-Al_2O_3$계 원료의 물라이트화에 미치는 영향)

  • 최상욱;이철규
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.61-68
    • /
    • 1980
  • The effect of the addition of various fluoreides on the mullitization of Korean crude kaolin was studied by X-ray powder diffraction and scanning electron microscopic methods. Kaolin without any addition of fluoreides began to be transformed into the mullite at 1, 10$0^{\circ}C$. Mullite peaks were discernible in the X-ray diffraction patterns of the specimens which contained fluorides equivalent to about 2 wt % fluorine, and which were sintered at 1, 05$0^{\circ}C$. The higher the concentration of fluorine in kaolin, the lower was the initiatinig temperature of mullitization. Experiments , for example, showed that mullite could be formed at 95$0^{\circ}C$ from kaolin mixed with 3.4% fluorine. Of the fluoride, addtives, sodiumsiliconfluoride $(Na_2SiF_6)$ was must effective in mullite formation of kaolin. In order of accelerating mullitization, the fluorides except $Na_2SiF_6$ could be placed in following sequence ; (1) sodium (NaF) (2) aluminium$(AlF_3)$ (3)potassium(KF) (4) ammonium$(NH_4F)$ (5) magnesium$(MgF_2)$ (6) calcium$(CaF_2)$. It was considered that the intrinsic characteristics of fluorides, such as size of ionic radiu, charge , bond strength between cation and anion, and electronegativity of cation affected millitization of halloysite, a main constituent mineral of kaolin.

  • PDF