• Title/Summary/Keyword: KEPCO system

Search Result 1,666, Processing Time 0.048 seconds

Development of Substation Automation System based on IEC 61850 (IEC 61850 기반의 변전소자동화 시스템 개발)

  • Lee, You-Jin;Kim, Yong-Hak;Shim, Eung-Bo;Han, Jeong-Yeol;Lee, Jong-Hwen
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.716-717
    • /
    • 2011
  • This paper presents the overview of development of substation automation system. The prototypes of SA system are developed in first phase, and being enhanced the performance in second phase. In this research, the project was classified into three projects which are the development of intelligent electronic devices, the development of operation system and communication network in substation, and the development of technology to verify the compatibility of IEC 61850. As a result of this research, the domestic-made SA system are operated and tested for the performance in 154kV substation and/or test-bed in KEPCO PT Center.

  • PDF

Design, Implementation of the Bulk Power Stabilizing System to ensure the appropriate Power System Reliability (적정 공급신뢰도 확보를 위한 안정화장치 구성 및 설치운영)

  • Kim, Chang-Mu;Lee, Hyo-Sang;Lee, Seung-Unn;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1510-1513
    • /
    • 1999
  • Carried out simulation for yearly peak and March load time of the KEPCO Power System in 1999. Analysis of the problems in power system operation by powerflow, fault and stability study. Establishment of power system optimal operating plan by installation of power system stabilizer.

  • PDF

Development of Wind Turbine Simulation System Based on IEC 61400-25 Standard

  • Lee, Jae-Kyung;Kim, Dong-Wook;Kim, Seok-Tae;Chae, Chang-Hun;Park, Joon-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.349-359
    • /
    • 2019
  • This paper introduces a wind turbine simulation system based on the IEC 61400-25 standard to simulate different kinds of wind turbines. A unified communication protocol was required for monitoring and control of wind turbines, because manufacturers had used their own protocols for their turbines. As a result of such an effort, the international standard IEC 61400-25 was established. To implement the schema of IEC 61400-25, the IEC61850 SCL was modified and applied to the simulation system, which enabled the system to be compatible with heterogeneous wind turbine information models. The developed simulation system can be used for interoperability tests with a new type of wind turbine information model.

Research on a Development of Power System Analysis Software Considering User Convenience (사용자 편의성을 고려한 전력계통 해석 프로그램 개발 연구)

  • Ko, Baekkyeong;Song, Jiyoung;Han, Sangwook;Lee, Jaegul;Shin, Jeonghoon;An, Youngho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Power system engineers use power systems solution programs such as PSS/E, DSATool, Power World simulators for power system analysis. In this reason, KEPCO has begun to develop independent power system program, KW-PSS(KEPCO World Power system Solution) since 2002 and KW-PSS ver2.0 development was completed in 2011. However, it did not have much better functions compared with other programs. Therefore, we focused on the development of the practical and specialized functions. Consequently, PAZ(Power system AnalyZer) ver3.0 has been developed and it realized a differentiation than previous version. In other words, previous version focused on the basic function of power system analysis, PAZ ver3.0 has implemented many automated functions for power system operators were driven maximize operational efficiency. The unique feature of the implementation is as follows : Automated check for exceeding the breaker capacity, Scheduled outage automation, Control-file wizard for various voltage stability analysis, Scenario-based multiple transient stability analysis and Auto calculation of transmission line impedance. As shown in these functions, Those functions provide to use power system analysis easily by automation and simplification for power system engineers. We will secure national expertise through PAZ ver3.0. In addition it will be able to gain competitive edge through the steady development in the world market.

Introduction of Sensors in Turbine Control Systems and Excitation Systems (발전소 터빈 제어시스템과 여자시스템에 사용되는 센서 소개)

  • Shin, Man-Su;Woo, Ju-Hee;Kim, Jong-An;Choe, In-Gyu;Ryu, Ho-Seon;Jeong, Tae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1818-1819
    • /
    • 2011
  • Turbine control system and excitation system have close relationship in the dynamic and real power system. Turbine control systems control the active power of generator and excitation systems control the voltage and reactive power of generator. The several sensors' characteristics in turbine control systems and excitation systems were reviewed.

  • PDF

Geographic Information System for Developing Advanced Distribution Management System (차세대 배전지능화시스템 개발을 위한 지리정보시스템 적용)

  • Kim, DongWook;Cho, SungHo;Seo, Hojin;Park, YoungBae
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.67-74
    • /
    • 2019
  • Recently, as the renewable distributed energy resources has increased, the variability within the electrical power distribution system has increased, so that there is a growing concern about the stable electrical power distribution system. For efficient management of future electrical power distribution system, it is necessary to improve the electrical power distribution system operation using new visualization technology. In this paper, we describe the current status of GIS introduction and related technology trends in the field of electrical power distribution, and analyze the necessity of GIS system for electrical power distribution system operation and problems to be solved when introducing GIS technology.

Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment (전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링)

  • Kook, Kyung Soo;Lee, Jihoon;Moon, Jonghee;Choi, Wooyeong;Park, Kijun;Jang, Dongsik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

Design of a Cooperative Voltage Control System Between EMS (VMS) and DMS

  • Shin, Jeonghoon;Lee, Jaegul;Nam, Suchul;Song, Jiyoung;Oh, Seungchan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.279-284
    • /
    • 2020
  • This paper presents the conceptual design of a cooperative control with Energy Management System (EMS) and Distribution Management System (DMS). This control enables insufficient reactive power reserve in a power transmission system to be supplemented by surplus reactive power in a power distribution system on the basis of the amount of the needed reactive power reserve calculated by the EMS. This can be achieved, because increased numbers of microgrids with distributed energy resources will be installed in the distribution system. Furthermore, the DMS with smart control strategy by using surplus reactive power in the distribution system of the area has been gradually installed in the system as well. Therefore, a kind of hierarchical voltage control and cooperative control scheme could be considered for the effective use of energy resources. A quantitative index to evaluate the current reactive power reserve of the transmission system is also required. In the paper, the algorithm for the whole cooperative control system, including Area-Q Indicator (AQI) as the index for the current reactive power reserve of a voltage control area, is devised and presented. Finally, the performance of the proposed system is proven by several simulation studies.

A Practical Power System Stabilizer Tuning Method and its Verification in Field Test

  • Shin, Jeong-Hoon;Nam, Su-Chul;Lee, Jae-Gul;Baek, Seung-Mook;Choy, Young-Do;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.400-406
    • /
    • 2010
  • This paper deals with parameter tuning of the Power System Stabilizer (PSS) for 612 MVA thermal power plants in the KEPCO system and its validation in a field test. In this paper, the selection of parameters, such as lead-lag time constants for phase compensation and system gain, is optimized using linear and eigenvalue analyses. This is then verified through the time-domain transient stability analysis. In the next step, the performance of PSS is finally verified by the generator's on-line field test. After the field test, measured and simulated data are also compared to prove the effectiveness of the models used in the simulations.

The Structure Of The New EMS in KEPCO (한국전력공사의 차세대 EMS 구상)

  • Yu, Sung-Chul;Kim, Chung-Kil;Kim, Jae-Ki;Lee, In-Kyu;Kim, Sung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.893-895
    • /
    • 1996
  • This paper presents the concept of the structure and major functions for the new EMS in KEPCO. This system will be in operation in the beginning of the 21 century in compliance with power system expansion and system architecture consists of distributed and open computer technology. The transmission operation control center as a back-up control center of NCC will control under 345kV transmission system and regional control centers.

  • PDF