• Title/Summary/Keyword: KEERC

Search Result 3, Processing Time 0.016 seconds

Characteristics of Korean Earthquakes and Research Activities for the Seismic Hazard Mitigation in Korea

  • Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.1-12
    • /
    • 1998
  • Korea is not considered to be one of the safe zones for earthquakes any more. According to the records of the historical records and recent earthquake events in Korea, the possibillty of disastrous seismic hazards cannot be ignored, Korea Earthquake Engineering Research Center (KEERC) and Earthquake Engineering Society of Korea(EESK) have been established by that consensus. In this paper, historical earthquake records and seismicity in Korea are reviewed. And the research activities and the research system for the earthquake hazards mitigation of KEERC are introduced and the efforts of ESSK to renovate seismic design code system and to optimize the protection levels against earthquake disasters is explained.

  • PDF

Basic Concepts in Criteria of Strong Motion Seismograph (지진계측기 표준규격에 대한 기본개념)

  • 지헌철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.468-476
    • /
    • 2000
  • The Criteria of strong motion seismograph installed at free surface and structure is developed as a cooperative project of KEERC considering seismicity and state of seismic instrumentation of Korea. The background of this development and basic concepts are summarized in this report. The criteria of seismic sensor and recorder is also introduced. It is highly recommended to apply this criteria to installation and operation of seismograph at free surface and structure.

  • PDF

Re-evaluated Overstrength Factor for Capacity Design of Reinforced Concrete Bridge Columns (철근콘크리트 기둥의 성능설계를 위한 모멘트 초과강도계수에 관한 연구)

  • Lee, Jae-Hoon;Choi, Jin-Ho;Ko, Seong-Hyun;Kwon, Soon-Hong
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.308-315
    • /
    • 2005
  • The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It is intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. For bridge systems, this means it is necessary to assess the overstrength capacity of columns prior to proceeding with the design of foundation and superstructure. The objective of this paper is to develop a capacity design approach that applies an overstrength factor for determination of possible maximum shear force in the plastic hinge zone of reinforced concrete bridge columns. In order to estimate and determine overstrength factor, material strength was developed to investigate for actual material strength total 3,407 steel and 5,405 concrete by domestic product. Based on actual material strength, this paper was conducted on moment overstrength factors using moment-curvature analysis program. And also design recommendations for capacity design are presented to revise the annual report, KEERC 2002.

  • PDF