• Title/Summary/Keyword: KCNQ1 S140G

Search Result 2, Processing Time 0.015 seconds

Effects of KCNQ1 S140G Mutation in Human Ventricular Fibrillation Mechanism

  • Jeong, Da-Un;Im, Gi-Mu
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.665-671
    • /
    • 2017
  • Iks 칼륨 전류에 관여하는 KCNQ1유전자의 S140G 돌연변이는 심방세동에 영향을 미치는 대표적인 돌연변이 유전자로, 심방세동과 S140G 돌연변이의 상관관계를 밝히기 위한 연구들이 많이 진행되어 왔다. 하지만 S140G 돌연변이 유전자가 심방 세동 환자의 심실 반응에 영향을 미칠 수 있다는 선행연구를 비롯하여 심방과 심실의 활동전위에 영향을 미칠 수 있는 가능성이 있음에도 불구하고, KCNQ1 S140G 돌연변이 유전자의 심실세동에 대한 영향과 그 메커니즘에 대한 연구는 부족하다. 따라서 본 연구는 KCNQ1 S140G 돌연변이 유전자가 심실세동에 미치는 영향에 대한 컴퓨터 시뮬레이션 연구를 통해 그 상관관계를 밝히고자 하였다. 이를 위해 1차원 세포 모델을 비롯하여 2차원 심실세동 반응과 3차원 전기 생리학 및 기계적 수축 시뮬레이션을 진행하였다. 3차원의 전기생리학 및 기계적 수축 시뮬레이션에서는 심실의 박출 활동을 확인하기 위한 정상 박동 시뮬레이션과 심실 세동 발생시의 심실의 변화를 확인하기 위한 세동 시뮬레이션을 각각 진행하였다. 그 결과 KCNQ1 S140G 돌연변이로 인해 심실의 Iks가 증가되었으며, 그로 인해 심실의 활동 전위기간(APD)과 불응기(ERP)가 단축되는 것을 확인할 수 있었다. 또한 활동전위 지속 곡선(APDr)과 불응기 지속 곡선(ERPr)이 완만하게 나타났으며, 심근세포의 전도파장이 감소하였다. 3차원 정상 박동 시뮬레이션의 결과 표준형에서 보다 KCNQ1 S140G 돌연변이형에서 심실이 소모하는 ATP의 양과 박출계수가 감소하였다. 3차원 세동 시뮬레이션 결과 표준형에서는 심실세동이 종결되었으나, S140G 돌연변이 형에서는 심실세동이 종결되지않고 유지되었으며, 심실세동이 빠르게 발생하였다. 결론적으로, KCNQ1 S140G 돌연변이로 인해 증가된 심실의 Iks는 심실의 박출 효율을 감소시키고 심실세동을 발생시키고 유지시키며, 부정맥 발생의 위험성을 높일 수 있다.

  • PDF

Correlation Analysis of KCNQ1 S140G Mutation Expression and Ventricular Fibrillation: Computer Simulation Study (KCNQ1 S140G 돌연변이 발현과 심실세동과의 상관관계 분석을 위한 컴퓨터 시뮬레이션 연구)

  • Jeong, Daun;Lim, Ki Moo
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.123-128
    • /
    • 2017
  • Background and aims: The KCNQ1 S140G mutation involved in $I_{ks}$ channel is a typical gene mutation affecting atrial fibrillation. However, despite the possibility that the S140G gene mutation may affect not only atrial but also ventricular action potential shape and ventricular responses, there is a lack of research on the relationship between this mutation and ventricular fibrillation. Therefore, in this study, we analyzed the correlation and the influence of the KCNQ1 S140G mutant gene on ventricular fibrillation through computer simulation studies. Method: This study simulated a 3-dimensional ventricular model of the wild type(WT) and the S140G mutant conditions. It was performed by dividing into normal sinus rhythm simulation and reentrant wave propagation simulation. For the sinus rhythm, a ventricular model with Purkinje fiber was used. For the reentrant propagation simulation, a ventricular model was used to confirm the occurrence of spiral wave using S1-S2 protocol. Results: The result showed that 41% shortening of action potential duration(APD) was observed due to augmented $I_{ks}$ current in S140G mutation group. The shortened APD contributed to reduce wavelength 39% in sinus rhythm simulation. The shortened wavelength in cardiac tissue allowed re-entrant circuits to form and increased the probability of sustaining ventricular fibrillation, while ventricular electrical propagation with normal wavelength(20.8 cm in wild type) are unlikely to initiate re-entry. Conclusion: In conclusion, KCNQ1 S140G mutation can reduce the threshold of the re-entrant wave substrate in ventricular cells, increasing the spatial vulnerability of tissue and the sensitivity of the fibrillation. That is, S140G mutation can induce ventricular fibrillation easily. It means that S140G mutant can increase the risk of arrhythmias such as cardiac arrest due to heart failure.