• Title/Summary/Keyword: KASS

Search Result 617, Processing Time 0.026 seconds

Navigation Performance Analysis of KASS Test Signals

  • Daehee Won;Eunsung Lee;Chulhee Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • This paper presents the analysis results of navigation performance of Korea Augmentation Satellite System (KASS) test signals. Performance analysis was performed with Global Positioning System (GPS) and Satellite Based Augmentation System (SBAS) signals received from 7 KASS reference stations. And the performances were analyzed in terms of the signal strength, statistics for each SBAS message, coverage of ionospheric correction, accuracy, integrity, continuity, and availability. In addition, the navigation solutions provided by commercial receiver was analyzed and the performance experienced by general users was presented. Lastly, directions for further improvement of the KASS system were addressed. These performance analysis results can be used to confirm the feasibility of utilizing KASS in user applications.

Development and Verification of Operation Management Tool for KASS

  • Minhyuk Son;ByungSeok Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.431-436
    • /
    • 2023
  • In order to provide continuous Korea Augmentation Satellite System (KASS) services, the operation organization should continuously and systematically perform operations, maintenance, and technical activities. All subsystems of KASS, all Line Replacement Units (LRUs), and Software Replacement Units (SWRUs) should be operated and maintained continuously. In order to effectively manage these activities, it is necessary to develop an Operation Management Tool (OMT). For this purpose, operation management, operation organization, and operation activities were defined. The defined requirements were divided into general, function, interface, and database for OMT development, and functions and decision-making procedures consisting of site/asset/trouble/work order/schedule management were designed. The OMT developed by reflecting the site and asset information as well as the design content met predefined requirements. The OMT will be actively used in actual KASS operation and will evolve by continuously reflecting the additional requirements of operators. Through this tool, KASS will support continuous service provision.

The Design of Monitoring & Control(M&C) for KUS RFS in KASS (KASS 위성통신국 RF시스템 감시제어장치 설계)

  • Kim, Taehee;Sin, Cheonsig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.50-55
    • /
    • 2017
  • In this paper, the design of the RF system monitoring and control system of KUS (KASS: KASS Uplink Station) which constitutes KASS (Korea Augmentation Satellite System) is described. The Korean satellite calibration system is named KASS and aims to develop the SBAS system of the APV-1 level SoL service level and the CAT-1 test operation technology. Software and hardware development environment, function and algorithm of supervisory control device, structure of supervisory control device, and user interface were designed to implement KUS / RFS monitoring control device. We have secured the stability and reliability of the system by using the monitoring and control system design of the COMS (Communication Ocean & Meteorological Satellite) and the Korea Satellite 5A / 7 control system, which has already been used for the design of the surveillance control system. In addition, we have made it possible to provide the user interface according to the actual operator's request more conveniently.

Conceptual Design of the RF Links for KASS Satellite Communication System (KASS 위성통신시스템 RF 링크 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.12-17
    • /
    • 2016
  • ICAO (International Civil Aviation Organization) recommends the introduction of SBAS (Satellite Based Augmentation System) in 2025, which provides GNSS (Global Navigation Satellite System) correction data and the ranging signal via GEO (geostationary earth orbit) satellites to GNSS users. In this paper, we present the basic design results of the satellite communication system RF link for the Korean SBAS systems, KASS (Korea Augmentation Satellite System) which is going on the development & implementation. KASS RF link was designed in consideration of both the C-band and Ku-band uplinks to meet the international standard requirements for the SBAS system, and identified the minimum EIRP and G/T performance of the KASS uplink station for each frequency band. These analysis results for the RF link design are expected to be used for an effective design of the subsystem specifications for KASS satellite communication system.

Application of Software Quality Model and Metric for Software Product Assurance for KASS Control Station (KASS 통합운영국 소프트웨어 품질 보증을 위한 소프트웨어 품질 모델 및 메트릭 적용방안)

  • Kim, Youn-sil;Lee, Eun-sung
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.28-36
    • /
    • 2020
  • Korea augmentation satellite system (KASS) is the Korean satellite based augmentation system (SBAS) developed by ministry of land, infrastructure, and transport (MOLIT) since 2014. Since KASS is the safety critical system that can affect to the safety of airplane, the software of KASS is developed according to the DO178B software level induced from safety analysis. In case of KASS control station (KCS), most of the software of KCS get assigned software level E in DO178B. In that case, ECSS-Q-ST-80C category D is assigned as a software product assurance standard. In this paper, the software related standard ECSS-E-ST-40C, ECSS-Q-HB-80-04A are analyzed to satisfy ECSS-Q-ST-80C and as a result the software product assurance activities regarding software life cycle and the software quality model, metric is proposed for the product assurance of the KCS software.

Activities and Planning for KRS Coordinates Maintenance

  • Kang, Hee Won;Cho, Sunglyong;Kim, Heesung;Yun, Youngsun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.327-332
    • /
    • 2022
  • The Korea Augmentation Satellite System (KASS) is the Satellite-Based Augmentation System (SBAS) under development in Korea. KASS navigation service support navigation Safety of Life (SoL) service. KASS signal provides corrections to Global Positioning System (GPS) data received from KASS Reference Stations (KRS) and is broadcast form Geostationary Earth Orbiting (GEO) satellites to KASS users and is used by GPS/SBAS user equipment to improve the accuracy, availability, continuity and integrity of the navigation solution. Seven KRS's collect the satellite data and send them to the KASS Processing Stations (KPS) for the generation of the corrections and the monitoring the integrity. For performing its computation the KPS needs to know accurate and reliable KRS antennas coordinates. These coordinates are provided as configuration parameters to the KPS. This means that the reference frame in which the KPS work is the one represented by the set of coordinates provided as input. Therefore, the activity to maintain the accuracy of the KRS antenna coordinates is necessary, knowing that coordinates can evolve due to earth plates movements or earthquakes. In this paper, we analyzed the geodetic survey results for KRS antenna coordinates from Site Acceptance Test (SAT) #1 in December 2020 to August 2022. In the future, it is expected that these activities and planning for KRS coordinates maintenance will be produced and provided to KASS system operators for KPS configuration updates during the KASS lifetime of 15 years. Through these maintenance activities, it is expected that monitoring and analysis of unpredictable events such as earthquakes and seism will be possible in the future.

KASS Message Scheduler Design

  • Yun, Youngsun;Lee, Eunsung;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.193-202
    • /
    • 2016
  • The Korea Augmentation Satellite System (KASS), which is under development in Korea as a Satellite Based Augmentation System (SBAS) is expected to broadcast SBAS messages to air space in Korea according to the international standards defined by the International Civil Aviation Organization (ICAO) and the Radio Technical Commission for Aeronautics (RTCA). Around 13 SBAS messages are broadcast in every second to transmit augmentation information which can be applicable to a wide area in common. Each of the messages requires a different update interval and time-out according to the characteristics, purpose, and importance of transmitted information, and users should receive and combine multiple SBAS messages to calculate SBAS augmented information. Thus, a time to take acquiring first SBAS position by users differs depending on broadcasting various SBAS messages with which order and intervals. The present paper analyzes the considerations on message scheduling for broadcasting of KASS augmentation information and proposes a design of KASS message scheduler using the considerations. Compared to existing SBAS systems, which have a wide range of service area, a service area of the KASS is limited to Korea only. Thus, the numbers of ionosphere grid points and satellites to be augmented are expected to be smaller than those of existing SBAS. By reflecting this characteristic to the proposed design, shortening of broadcast interval of KASS message is verified compared to existing SBAS and a measure to increase a speed of acquisition of user navigation solution is proposed utilizing remaining message slots. The simulation result according to the proposed measure showed that the maximum broadcast interval can be reduced by up to 20% compared to that of existing SBAS, and users can acquire KASS position solution faster than existing SBAS.

Development of status monitoring tools for KASS system operation (KASS 시스템 운영을 위한 상태감시 도구 개발)

  • Minhyuk SON;ByungSeok LEE
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.643-648
    • /
    • 2023
  • The Korea Augmentation Satellite System is an SBAS system being developed with the goal of providing SoL (Safety of Life) in accordance with ICAO (International Civil Aviation Organization) standards by December 2023. Monitoring the status of the system is essential for the continuous provision of KASS services, and a status monitoring tool should be developed for this purpose. The development of a status monitoring tool was divided into SYSRT (SYStem Real Time monitoring tool), SMSPP (Subsystem Monitoring Statistics tool for Post Processing) depending on the purpose. Tool development was completed through a series of procedures: requirements definition, design, development, and verification. To verify the status monitoring tool, the KASS system's real data (August 2023) were used to verify it, and the results were statistically analyzed to derive operating time and operating rate. It plans to use these tools to support continuous service provision for SoL service starting after this year.

Development of maintenance concept and procedures for KASS (KASS 유지보수 정의 및 절차 개발)

  • Minhyuk Son;Youngsun Yun;ByungSeok Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2022
  • KASS (korea augmentation satellite system) is an SBAS (satellite based augmentation system) that must ensure the performance of aviation service in accordance with the International Civil Aviation Organization's SARPs (standards and recommended practices) Annex 10 - Aeronautical Telecommunications. In order to guarantee the target service performance, the operating system must be operated, maintained and managed stably, and a maintenance system must be established for this purpose. From the maintenance point of view, the KASS subsystems were developed to consist of replacement units, and the maintenance organization and procedures to manage those subsystems and units were defined. In addition, the maintenance task for each the replacement unit was developed to ensure the availability performance required for the successful KASS operation, and the developed tasks were verified to sufficiently cover the activities to maintain the previously defined replacement units. The maintenance tasks developed through this study will be continuously verified in the actual operation preparation process prior to the full-scale provision of aviation services in the end of 2023, and will be updated accordingly.

Analysis of the Requirements and Design of KASS Measuring Equipment (KASS 탑재측정장비 요구사항 및 설계방안 분석)

  • Kim, Woo-Ri-Ul;Hong, Gyo-Young;Kang, Hee Won;Choi, Kwang-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.544-548
    • /
    • 2017
  • The International Civil Aviation Organization is recommending the use of SBAS on all aircraft by 2025 to urge PBN implementation around the world. As part of this, Korea is also developing KASS, a Korean SBAS. ICAO grants authority to the host nation aviation authority in the certification and operation of SBAS. The KASS system will be verified after detailed system design, fabrication and installation. In this paper, flight test parameters are derived from the flight inspection regulations and the configuration of the on - board measurement equipment for measuring the parameters has been proposed.