• Title/Summary/Keyword: KASP assay

Search Result 4, Processing Time 0.018 seconds

A Study on KASP Analysis Based on SNP to Rapidly Identify Caviar-Producing Sturgeon Species (캐비어를 생산하는 철갑상어의 신속 종판별을 위한 SNP 기반 KASP 분석에 관한 연구)

  • Sun Hee Lee;Bo Reum Park;Hyung Il Kim;Sooyeul Cho;Kyung-Hun Son
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.209-220
    • /
    • 2024
  • Cavier is graded as Beluga, Osetra, and Sevruga based on the species of sturgeon (Acipenser sinensis). In this study, we developed an analytical method for determining the grade of black caviar using DNA barcodes and KASP markers. To identify the sturgeon species, ten black caviar samples were collected, and a reference DNA barcode library was developed using five genes (namely, 16S ribosomal RNA, cytochrome b, cytochrome c oxidase subunit I, cytochrome c oxidase subunit II, and NADH dehydrogenase subunit 5 genes). To develop the KASP markers, we selected 11 markers that could distinguish between the five grades of black caviar. As a result, specific markers for each of the targeted caviars were clustered into FAM-positive sections. DNA barcoding and the KASP assay revealed that one Beluga, six Osetra, and three Sevruga were identified among the ten caviar samples. Moreover, we found that the sturgeon species were mislabeled in two products. Here, we aimed to develop a KASP assay based on SNP that allows rapid and easy identification of caviar grade. These methods are expected to contribute to preventing the distribution of illegal products.

Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat

  • Singh, Lovepreet;Anderson, James A;Chen, Jianli;Gill, Bikram S;Tiwari, Vijay K;Rawat, Nidhi
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gelbased gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.

Development and Utilization of KASP Markers Targeting the Lipoxygenase Gene in Soybean

  • Seo-Young Shin;Se-Hee Kang;Byeong Hee Kang;Sreeparna Chowdhury;Won-Ho Lee;Jeong-Dong Lee;Sungwoo Lee;Yu-Mi Choi;Bo-Keun Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.294-303
    • /
    • 2023
  • Lipoxygenase gives soybeans their grassy flavor, which can disrupt food processing efficiency. This study aimed to identify soybean genotypes with lipoxygenase deficiency among 1,001 soybean accessions and to develop kompetitive allele specific PCR (KASP) markers that can detect lipoxygenase mutations. Three lipoxygenase isozymes (Lox1, Lox2, and Lox3) were analyzed using a colorimetric assay based on a substrate-enzyme reaction. Among the 1,001 accessions examined, two (IT160160 and IT276392) exhibited a deficiency solely in Lox1, and one (IT269984) lacked both Lox1 and Lox2. IT160160 had a 74-bp deletion in exon 8 of Lox1 (Glyma13g347600), whereas IT276392 displayed a missense mutation involving the change of C to A at position 2,880 of Lox1. Moreover, we successfully developed four KASP markers that specifically target Lox1, Lox2, and Lox3 mutations. To validate the Lox1 KASP markers, we used two F2:3 populations generated through a cross between Daepung 2 (lipoxygenase wild type, maternal parent), IT160160, and IT276392 (null Lox1, paternal parent). The results revealed that the Daepung 2 × IT160160 group followed the expected 3:1 ratio according to Mendel's law, whereas the Daepung 2 × IT276392 group did not. Furthermore, a comparison between the colorimetric and KASP marker analyses results revealed a high agreement rate of 96%. KASP markers offer a distinct advantage by allowing the distinction of heterozygous types independent of other variables. As a result, we present an opportunity to expedite the lipoxygenase-deficient cultivar development.

Development and Utilization of KASP Markers for the Identification of Three Types of Ephedra Herbs (마황 3종 판별을 위한 KASP 마커 개발과 활용)

  • Boreum, Park;Sun Hee, Lee;Kyung-Moon, Han;Jin Woo, Hwang;Hyung il, Kim;Sun Young, Baek
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.4
    • /
    • pp.226-233
    • /
    • 2022
  • Ephedra herbs are defined as stem of Ephedra sinica , Ephedra intermedia and Ephedra equisetina in the Korean Pharmacopoeia. It is important to use pure herbs to derive the safety and efficacy of herbal medicine. However, the identification of these herbs by conventional taxonomic methods is difficult. Recently, many studies have applied these DNA barcoding for the identification of herbal medicinal species using standard DNA markers. In this study, we report a case study in which the identification of Ephedra species was done by DNA barcoding. For identification of Ephedra species, 17 samples were collected, and a reference DNA barcode library was developed using 6 markers (rbcL, matK, ITS2, ycf1, ycf3, and rpoC2). To develop KASP-SNP markers, we selected 4 markers (ycf1, ycf3, rpl2, and rbcL), which were able to distinguish three Ephedra species. In the result, the specific markers for each of the three Ephedra were clustered into FAM-positive section, whereas non-targeted plants were clustered either HEX-positive or negative section. Therefore, we have developed KASP assay that allow rapid and easy Ephedra species identification using three KASP markers.