• Title/Summary/Keyword: KASI

Search Result 956, Processing Time 0.026 seconds

Tiny Pores Observed by New Solar Telescope and Hinode

  • Cho, Kyung-Suk;Bong, Su-Chan;Chae, Jong-Chul;Kim, Yeon-Han;Park, Young-Deuk;Ahn, K.;Katsukawa, Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Our previous study on tiny pores (R < 2") observed by HINODE/Solar Optical Telescope (SOT) revealed that the plasma in the pores at the photosphere is always moving down and the pores are surrounded by the strong downward motions (highly red-shifted) of neighboring granulations. From this study, we speculated that the flow motions above the pore should be related with the motions at the photosphere, since the pore is strong magnetic field region. Meanwhile, SNU and KASI installed Fast Imaging Solar Spectrograph (FISS) in the Cude room of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. To get some clue on the relationship between the photospheric and low-chromospheric motions at the pore region, we took a coordinate observation with NST/FISS and Hinode/SOT for new emerging active region (AR11117) on October 26, 2010. In the observed region, we could find two tiny pores and two small magnetic islands (SMIs), which have similar magnetic flux with the pores but does not look dark. Magnetic flux density and Doppler velocities at the photosphere are estimated by applying the center-of-gravity (COG) method to the HINODE/spectropolarimeter (SP) data. The line-of-sight motions above the photosphere are determined by adopting the bisector method to the wing spectra of Ha and CaII 8542 lines. As results, we found the followings. (1) There are upflow motion on the pores and downflow motion on the SMIs. (2) Towards the CaII 8542 line center, upflow motion decrease and turn to downward motion in pores, while the speed of down flow motion increases in the SMIs. (3) There is oscillating motion above pores and the SMIs, and this motion keep its pattern along the height. (4) As height increase, there is a general tendency of the speed shift to downward on pores and the SMIs. This is more clearly seen on the other regions of stronger magnetic field. In this talk, we will present preliminary understanding of the coupling of pore dynamics between the photosphere and the low-chromosphere.

  • PDF

MIRIS Science Missions

  • Jeong, Woong-Seob;Matsumoto, Toshio;Seon, Kwang-Il;Lee, Dae-Hee;Ree, Chang-Hee;Park, Young-Sik;Nam, Uk-Won;Pyo, Jeong-Hyun;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Park, Jang-Hyun;Lee, Duk-Hang;Lee, Sung-Ho;Yuk, In-Soo;Ahn, Kyung-Jin;Cho, Jung-Yeon;Lee, Hyung-Mok;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.26.4-27
    • /
    • 2010
  • The main payload of STSAT-3 (Science and Technology Satellite 3), MIRIS (Multipurpose InfraRed Imaging System) is the first Korean infrared space mission to explore the near-infrared sky with a small astronomical instrument, which is being developed by KASI. The 8-cm passively cooled telescope with a wide field of view (3.67 deg. $\times$ 3.67 deg.) will be operated in the wavelength range from 0.9 to $2{\mu}m$. It will carry out wide field imaging and the emission line survey. The main purposes of MIRIS are to perform the Cosmic Infrared Background (CIB) observation at two wide spectral bands (I and H band) and to survey the Galactic plane at $1.88{\mu}m$ wavelength, the Paschen-$\alpha$ emission line. CIB observation enables us to reveal the nature of degreescale CIB fluctuation detected by the IRTS (Infrared Telescope in Space) mission and to measure the absolute CIB level. The Pashen-$\alpha$ emission line survey of Galactic plane helps us to understand the origin of Warm Ionized Medium (WIM) and to find the physical properties of interstellar turbulence related to star formation. Here, we also discuss the observation plan with MIRIS.

  • PDF

Infrared Spectro-Photomeric Survey Missions: NISS & SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Minjin;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Park, Young-Sik;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Seo, Hyun Jong;Ko, Kyeongyeon;Kim, Seongjae;Hwang, Hoseong;Song, Yong-Seon;Lee, Jeong-Eun;Im, Myungshin;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 was successfully launched on last December and is now under the operation phase. The capability of both imaging and spectroscopy is a unique function of the NISS. It has realized the imaging spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in the local and distant universe. It also demonstrated the space technologies related to the infrared spectro-photometry in space. The NISS is performing the imaging spectroscopic survey for local star-forming galaxies, clusters of galaxies, star-forming regions, ecliptic deep fields and so on. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech). As an international partner, KASI will participate in the development and the science for SPHEREx. It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have a much wider FoV of $3.5{\times}11.3deg$. as well as wider spectral range from 0.75 to $5.0{\mu}m$. Here, we introduce the status of the two space missions.

  • PDF

Visibility Analysis of Iridium Communication for SNIPE Nano-Satellite (SNIPE 초소형위성용 Iridium 통신 모듈의 가시성 분석)

  • Cho, Dong-Hyun;Kim, Hongrae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Compared to the continuous increase of domestic nano-satellite development cases, the initial communication success rate is relatively low. In a situation where communication cases of LEO satellites using commercial satellite communication networks are increasing recently. In this situation, the SNIPE project developed by the KASI(Korea Astronomy and Space Science Institute), KARI(Korea Aerospace Research Institute), and Yonsei University apply an Iridium module for communication test to the SNIPE nano-satellites. Therefore, in this paper, the visibility analysis of the iridium module on the SNIPE satellite was analyzed under considering the orbital and communication environment of the iridium satellite constellation and the attitude control mode. In the case of LEO satellites, the communication possibility was limited due to the relatively small iridium communication coverage for high altitude and the high doppler shift considered in the iridium communication network. For this reason, in this paper, it could be simulated that there was a more performance difference according to the difference in relative RAAN(Right Ascension of Ascending Node) angle with the Iridium constellation. Finally, by checking the visibility of communication module under the tumbling situation that occurred during the initial deployment of the nano-satellite, the possibility of using the iridium communication technology was analyzed.

Space Telescope Pre-study of KASI for the Next Decades (2030년대 우주망원경 운영을 대비한 한국천문연구원의 우주망원경 사전 연구)

  • Moon, Bongkon;Lee, Dae-Hee;Choi, Young-Jun;Han, Wonyong;Nam, Ukwon;Park, Youngsik;Park, Won-Kee;Lee, Duk-hang;Kim, Woojin;Han, Jeong-Yeol;Choi, Seonghwan;Kim, Jihun;Ko, Jongwan;Kim, Il-joong;Moon, Hong-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.77.1-77.1
    • /
    • 2021
  • 한국천문연구원은 천문우주분야의 과학임무 탑재체 개발을 주도적으로 수행해오고 있다. 과학기술위성1호 주탑재체 원자외선영상분광기 FIMS 개발, 과학기술위성3호 주탑재체 다목적적외선영상시스템 MIRIS 개발, 차세대소 형위성1호 주탑재체 근적외선영상분광기 NISS 개발을 수행하였고, 현재는 NASA와 국제협력으로 SPHEREx 우주 망원경을 개발하고 있다. 이러한 개발 과정을 거치면서 주경 20cm 이하의 소형 탑재체 과학임무 한계와 더불어 연구 현장에서 더 큰 우주망원경의 수요가 제기되었고, 현재의 국가우주개발 중장기계획에도 2030년대 한국형 우주망원경을 포함하게 되었다. 이러한 일정에 발맞추어 한국천문연구원은 2030년대 한국형 우주망원경 독자 운영을 대비하기 위해서 2020년 1월부터 주요 사업으로 한국형 우주망원경 개발을 위한 기획연구를 시작하였다. 이 기획연구는 2021년 말까지 2년 동안 수행하고 있으며, 이 기획연구를 통해서 학계의 과학임무 요구사항을 종합 수렴하였고, 관련 컨설팅 업체와 협업하여 사전 기획연구 활동들을 수행하였으며, 향후 우주망원경 개발에 대한 전략을 제안하고 보고서를 마무리하는 단계에 와 있다. 이 발표에서는 이러한 기획연구의 세부 활동을 공유하고 보고하고자 한다.

  • PDF

Proposal of Joint Planning Working Group for Development of Korean Space Telescopes (한국형 우주망원경 개발을 위한 공동기획 Working Group 제안)

  • Han, Jeong-Yeol;Park, Woojin;Jun, Youra;Kim, Jihun;Kim, Yunjong;Choi, Seonghwan;Kim, Young-Soo;Baek, Ji-Hye;Moon, Bongkon;Jang, Biho;Kim, Jae-Woo;Hong, Sungwook E.;Jung, Youn Kil;Pak, Soojong;Chung, Soyoung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.283-301
    • /
    • 2021
  • In order to satisfy the intellectual curiosity of mankind to explore the unknown, National Aeronautics and Space Administration (NASA) in the United States and European Space Agency (ESA) in Europe are embarking on various R&D under the motto of the grand dream of pioneering space into a safe and sustainable environment. In the 2020s and 30s, it is expected that advanced giant observation equipment will be in operation, such as the development of a 10-meter-class telescope in space. In Korea, following the development of the 0.15 m Near-Infrared Imaging Spectrometer (NISS), Korea Astronomy and Space Science Institute (KASI) is also participating a 0.2 m Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer (SPHEREx) as an international cooperation partner in small exploration telescope. However, domestic experience in the development and operation of the space telescopes is still insufficient, and there is no plan with long-term prospects for constructing telescopes. In order to answer questions about the unknown world that mankind has not experienced using our own equipment, planning and preparation for the construction of a space telescope through close cooperation among industry-university-institute-government is urgently needed. In this paper, the necessity, background, development goals, and expected effects of the development of the Korean Space Telescope are summarized conceptually, and a working group (WG) is also proposed. In the WG activities, Korea shall take the lead in establishing the Korean-style space telescope development plan, and will start a valuable step to establish the national direction in the field of space astronomy and related technologies. We hope that the WG will be another milestone in Korea's space development.