• Title/Summary/Keyword: KARICO

Search Result 87, Processing Time 0.021 seconds

Application of SP Survey and Numerical Modeling to the Leakage Problem of Irrigation facilities (수리시설물 누수탐지에 대한 자연전위법 적용 및 수치 해석)

  • Song Sung-Ho;Kwon Byung-Doo;Yang Jun-Mo;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.257-261
    • /
    • 2002
  • We have carried out integrated research including field survey and numerical modeling to appraise the applicability of SP method to the leakage problems of irrigation facilities. The leakage pattern of the dike studied here can be classified into the three categories: leakage through the abutment, leakage by piping through dike, and leakage due to the composite effects of landslide and distortion of the dike structure. for the numerical modeling to interpret quantitatively SP survey results acquired at dike, we have modified the computer code proposed by Sill (1983) to apply to the leakage problems. The numerical studies match the characteristic patterns of SP anomalies according to the leakage types and appear to be very useful to interpret the leakage zone and path. The SP monitoring results were also well coincided with tidal variations observed at every embankment so we found the SP method is quite effective not only to detect the leakage zone but also to determine the leakage trend. The numerical modeling results also reproduced the SP anomalies due to seawater leakage in the embankment.

The Study on Constructing Underground Wall to Prevent Seawater Intrusion on Coastal Areas (지하수댐 물막이벽 시공법과 해안지역 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.215-234
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control, Groundwater Dam had initiated its construction by RDC(former KARICO) in early eighties in Korea and 4 of it in total were added more until late eighty. However, this technique has shrunken its application due to gradually decreased yield rate after sever years of construction. After we studied several existing sites precisely, we concluded that the main reason of decreasing yield rate was come form engineering roughness on construction in early nineties. Theoretically, the technique itself seemed to be little detectives however, there were a little application in the fields in Korea. With the recent advance in engineering fields, those defects in construction would be no longer obstacle to construct underground wall and the technique could be a one of major ground water production technique in the future. It is essential to study following items thoroughly before select the appropriate site. The topography and the site of the underground wall, aquifer distribution, the specific technique for wall construction to block groundwater flow effectively and strict quality control during construction are critical. The surface and ground water monitoring data should be collected. Sustainability of the Groundwater Dam with huge groundwater abstraction in long term should be based on the long-term water balance analysis for each site. The water quality, environmental effect analysis and maintenance achedule should be also analyzed and planned in prior. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

Soil Survey and Land Evaluation for Establishing the Demonstration Farm in the Oudomxai Province, Laos (농업투자용 시범농장 조성 후보지 선정을 위한 라오스 우돔싸이주(州)의 토양조사 및 토지특성 평가)

  • Park, Moo-Eon;Park, Ki-Wook;Cho, Il-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.1024-1034
    • /
    • 2010
  • In order to select the demonstration farm site for agricultural investment by Korean fund, 14 sites were investigated by soil morphological characteristics and were evaluated by rating method in the Oudomxai province of Laos. Land evaluation was carried out by using eight factors, such as site accessibility, soil erosion susceptibility, easiness of farm mechanization, irrigation water obtainability, suitability of soil physical and chemical properties for crop growth, cost for establishment of farm foundation and land obtainability. In addition, one site to have been highly ranked was soil physico-chemically studied for farm planning. The site of heavy clayey soil has hydraulic conductivity of 26.27~40.64 cm $day^{-1}$, organic content of lower than 14 g $kg^{-1}$, available phosphate content of lower than 3 mg $kg^{-1}$, exchangeable cations of lower than 0.38, 11 and 3.1 cmolc $kg^{-1}$ in K, Ca and Mg, respectively. Major important limitations for establishment of demonstration farm were concluded as heavy soil-texture, high soil erodibility, low organic matter and phosphate contents, and insufficient irrigation water in the Oudomxai province of Laos.

Influence of the Existing Cavern on the Stability of Adjacent Tunnel Excavation by Small-Scale Model Tests (축소모형시험을 통한 공동이 근접터널 굴착에 미치는 영향평가)

  • Jung, Minchul;Hwang, Jungsoon;Kim, Jongseob;Kim, Seungwook;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.117-128
    • /
    • 2014
  • Generally, when constructing a tunnel close to existing structures, the tunnel must be built at a constant distance from the structures that is more than width of tunnel to minimize the impact of interference between an existing structures and new tunnel. Spacing of these closed tunnels should be designed considering soil state, size of tunnel and reinforcement method. Particularly when the ground is soft, a care should be taken with the tunnel plans because the closer the tunnel is to the existing structures, the greater the deformation becomes. As methods of reviewing the effect of cavities on the stability of a tunnel, field measurement, numerical analysis and scaled model test can be considered. In the methods, the scaled model test can reproduce the engineering characteristics of a rock in a field condition and the shape of structures using the scale factor even not all conditions cannot be considered. In this study, when construction of a tunnel close to existing structures, the method and considering factors of the scaled model test were studied to predict the actual tunnel behavior in planning stage. Furthermore, model test results were compared with the numerical analysis results for verifying the proposed model test procedure. Also, practical results were derived to verify the stability of a tunnel vis-a-vis cavities through the scaled model test, which assumed spacing distances of 0.25 D, 0.50 D, and 1.00 D between the cavities and tunnel as well as the network state distribution. The spacing distances of 1.0 D is evaluated as the critical distance by the results of model test and numerical analysis.

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

Importance of Microtextural and Geochemical Characterizations of Soils on Landslide Sites (산사태지역 토층의 미세조직과 지화학적 특성의 중요성)

  • Kim Kyeong-Su;Choo Chang-Oh;Booh Seong-An;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.447-462
    • /
    • 2005
  • The purposes of this study are to evaluate and discuss the importance of geochemical properties of soil materials that play an important role in the occurrence of the landslide, using analyses of microtexture, particle size distribution, XRC, and FE-SEM equipped with energy dispersive spectrum on soils collected from landslide slopes of gneiss, granite and sedimentary rock areas. Soils from gneiss and granite areas where landslides took place have much clay content relative to those from non landslide areas, particularly pronounced in the granite area. Therefore the clay content is considered a sensitive factor on landslide. Clay minerals contained in soils are illite, chlorite, kaolinite and montmorillonite. Especially the content of clay minerals in soils from the Tertiary sedimentary rocks is highest, with abundant montmorillonite as expandable species. It is believed that this area was much vulnerable to landslide comparable to other areas because of its high content of monoorillonite, even though there might be weak precipitation. Since no conspicuous differentiation in mineralogy between the landslide area and non landslide area can be made, the occurrence of landslide may be influenced not by mineralogy, but by local geography and mechanical properties of soils. Geochemical information on weathering properties, mineralogy, and microtexture of soils is helpful to better understand the causes and patterns of landslide, together with engineering geological analyses.

Variation of Water Qualities Due to Freshwater Introduction to Tidal Flat: A Mesocosm Study (메조코즘을 이용한 갯벌의 담수화과정 중 수질 변화)

  • Kim Yeong-Tae;Jeong Yong-Hoon;Chae Youn-Ju;Rhee Choong-Won;Kim Soh-Yong;Choi Kang-Won;Yang Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.49-67
    • /
    • 2006
  • A mesocosm, an artificial tidal flat ecosystem, was constructed outdoors to simulate in situ physical and biochemical environmental conditions of natural tidal flat as much as possible. During the experiment from February to August 2004, the study was focused on the biogeochemical variations of superficial water and porewater after introduction of freshwater into the mesocosm. The mesocosm has three experimental conditions; SW-M-T: maintaining the saline water of approximately 20 psu; FW-M-T: complete exchange of freshwater ul the mesocosm with continuous mixing of water column: FW-NM-T: complete exchange of saline water to freshwater in the mesocosm without mixing of water column. Mass extinction of benthic macrofauna appeared due to drastic decrease of porewater salinity from 20 psu to less than 10 psu between the 63th and 91st day of freshwater introduction in FW-M-T and FW-NM-T. Throughout the periods, 7/8 of bivalves and 2/3 of polychaete populations have been extinguished in the sediment. In FW-NM-T, as temperature rises, both evident decrease of DO in water column and active release of DIP from sediment were observed. ${NO_3}^-$ was removed from water column into sediment throughout the periods. Therefore extremely low ${NO_3}^-$ was found during late spring and summer. Whereas ${NH_4}^+$ exhibited only $1/2{\sim}1/8$ of ${NO_3}^-$ concentration. Unexpectedly even after mass extinction of benthic macrofauna, we were not able to find high ${NH_4}^+$. This mesocosm study suggests that when fresh water introduce to natural tidal flat, its sediment activity functions as a potential source of DIP, but a sink of ${NO_3}^-$.