• Title/Summary/Keyword: KAERI Underground Research Tunnel

Search Result 77, Processing Time 0.026 seconds

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Potential repository domain for A-KRS at KURT facility site (KURT 부지 조건에서 A-KRS 입지 영역 도출)

  • Kim, Kyung-Su;Park, Kyung-Woo;Kim, Geon-Young;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The potential repository domains for A-KRS (Advanced Korean Reference Disposal System for High Level Wastes) in geological characteristics of KURT (KAERI Underground Research Tunnel) facility site were proposed to develop a repository system design and to perform the safety assessment. The host rock of KURT facility site is one of major Mesozoic plutonic rocks in Korean peninsula, two-mica granite, which was influenced by hydrothermal alteration. The topographical features control the flow lines of surface and groundwater toward south-easterly and all waters discharge to Geum River. Fracture zones distributed in study site are classified into order 2 magnitude and their dominant orientations are N-S and E-W strike. From the geological features and fracture zones, the potential repository domains for A-KRS were determined spatially based on the following conditions: (1) fracture zone must not cross the repository; and (2) the repository must stay away from the fracture zones greater than 50 m. The western region of the fracture zones in the N-S direction with a depth below 200 m from the surface was sufficient for A-KRS repository. Because most of the fracture zones in N-S direction were inclined toward the east, we expected to find a homogeneous rock mass in the western region rather than in the eastern region. The lower left domain of potential domains has more suitable geological and hydrogeological conditions for A-KRS repository.

Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes (방사성폐기물 지하처분장에 대한 가상의 사례 연구를 위한 KURT 부지의 지하수 유동 모의)

  • Ko, Nak-Youl;Park, Kyung Woo;Kim, Kyung Su;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2012
  • Groundwater flow simulations were performed to obtain data of groundwater flow used in a safety assessment for a hypothetical geological disposal facility assumed to be located in the KURT (KAERI Underground Research Tunnel) site. A regional scale modeling of the groundwater flow system was carried out to make boundary conditions for a local scale modeling. And, fracture zones identified at the study site were involved in the local scale groundwater flow model. From the results of the local scale modeling, a hydraulic head distribution was indicated and it was used in a particle tracking simulation for searching pathway of groundwater from the location of the hypothetical disposal facility to the surface where the groundwater reached. The flow distance and discharge rate of the groundwater in the KURT site were calculated. It was thought that the modeling methods used in this study was available to prepare the data of groundwater flow in a safety assessment for a geological disposal facility of radioactive wastes.

Solubilities and Major Species of Selenium and Technetium in the KURT Groundwater Conditions (KURT 지하수 조건에서 셀레늄과 테크네튬의 용해도 및 주요 화학종)

  • Kim, Seung-Soo;Min, Je-Ho;Baik, Min-Hoon;Kim, Gye-Nam
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • The long-lived fission products $^{79}Se$ and $^{99}Tc$ have been considered as the major concern nuclides for the disposal of radioactive waste because of their high solubilities and the existence of anionic species in natural water. In this study, the solubilities of $FeSe_2(s)$ and $TcO_2(s)$, known as respective Solubility Limiting Solid Phase (SLSP) of selenium and technetium, were measured in the KURT (KAERI Underground Research Tunnel) groundwater under various pH and redox conditions. And their solubilities and major species were also calculated using geochemical codes under conditions similar to experimental solutions. Experimental results and calculation for $FeSe_2$ show that the solubility of selenium was found to be below $1{\times}10^{-6}mol/L$ under the condition of pH 8~9.5 and Eh=-0.3~-0.4 V while the dominant species was identified as $HSe^-$. For $TcO_2$, the solubility of technetium was found to be $5{\times}10^{-8}{\sim}1{\times}10^{-9}mol/L$ in the solutions of pH 6~9.5 and Eh<-0.1 V, while the dominant species was $TcO(OH)_2$. However, when the Eh of the solution is -0.35 V, $TcO(OH)_3^-$ and $TcO_4^-$ are calculated as the dominant species at pH 10.5~12 and pH>12, respectively.

Study on Moye's Method for Analysis of Constant-Head Tests Conducted in Crystalline Rock (결정질 암반에서 Moye 방법을 이용한 정압시험의 해석에 대한 고찰)

  • Kyung-Woo Park;Byeong-Hak Park;Sung-Hoon Ji;Kang-Kun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.519-530
    • /
    • 2023
  • Moye's analytical solution was examined as a method for constant-head tests under steady-state conditions, and results were compared with transient-state analyses in in situ hydraulic tests. The sensitivity of hydraulic conductivities calculated using Moye's method increased with the length of the test section, which should be as large as possible under test conditions. Particularly in low-permeability media with less than 10-8 m/sec of hydraulic conductivity, hydraulic conductivity is lower than that under transient-state conditions and can be recalculated by adjusting the boundary between radial and spherical flow assumed in Moye's equation. Constant-head tests performed in the research borehole at the KAERI Underground Research Tunnel (KURT) indicated that transmissivities derived from the constant-head withdrawal test under transient-state conditions in low-permeability media were higher than those derived from steady-state tests, likely because the groundwater flow boundary was smaller than the "half of the test-section length"assumed by Moye's equation. When interpreting constant-head test results for crystalline rock, the hydrogeological properties of the medium may be better understood by considering assumed conditions accompanying analysis of the steady-state condition and comparing them with results for the transient-state analysis, rather than simply assuming properties based on steady-state analyses.

Feasibility Assessment on the Application of X-ray Computed Tomography on the Characterization of Bentonite under Hydration (벤토나이트 수화반응 특성화를 위한 X선 단층촬영 기술 적용성 평가)

  • Melvin B., Diaz;Gyung Won, Lee;Seohyeon, Yun;Kwang Yeom, Kim;Chang-soo, Lee;Minseop, Kim;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.491-501
    • /
    • 2022
  • Bentonite has been proposed as a buffer and backfill material for high-level radioactive waste repository. Under such repository environment conditions, bentonite is subjected to combined thermal, hydrological, mechanical, and chemical processes. This study evaluates the feasibility of applying X-ray CT technology on the characterization of bentonite under hydration conditions using a newly developed testing cell. The cylindrical cell is made of platic material, with a removable cap to place the sample, enabling to apply vertical pressure on the sample and to measure swelling pressure. The hydration test was carried out with a sample made of Gyeonju bentonite, with a dry density of 1.4 g/cm3, and a water content of 20%. The sample had a diameter of 27.5 mm and a height of 34 mm. During the test, water was injected at a constant pressure of 0.207 MPa, and lasted for 7 days. After one day of hydration, bentonite swelled and filled out the space inside the cell. Moreover, CT histograms showed how the hydration process induced an initial increase and later progressive decrease on the density of the sample. Detailed profiles of the mean CT value, CT standard deviation, and CT gradient provided more details on the hydration process of the sample and showed how the bottom and top regions exhibited a decrease on density while the middle region showed an increase, especially during the first two days of hydration. Later, the differences in CT values with respect to the initial state decreased, and were small at the end of testing. The formation and later reduction of cracks was also characterized through CT scanning.

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.