• Title/Summary/Keyword: KA receptor

Search Result 36, Processing Time 0.018 seconds

Effects of Keratinocyte Growth Factor on the Uterine Endometrial Epithelial Cells in Pigs

  • Ka, Hak-Hyun;Bazer, Fuller W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1708-1714
    • /
    • 2005
  • Keratinocyte growth factor (KGF) functions in epithelial growth and differentiation in many tissues and organs. KGF is expressed in the uterine endometrial epithelial cells during the estrous cycle and pregnancy in pigs, and receptors for KGF (KGFR) are expressed by conceptus trophectoderm and endometrial epithelia. KGF has been shown to stimulate the proliferation and differentiation of conceptus trophectoderm. However, the role of KGF on the endometrial epithelial cells has not been determined. Therefore, this study determined the effect of KGF on proliferation and differentiation of endometrial epithelial cells in vitro and in vivo using an immortalized porcine luminal epithelial (pLE) cell line and KGF infusion into the uterine lumen of pigs between Days 9 and 12 of estrous cycle. Results showed that KGF did not stimulate proliferation of uterine endometrial epithelial cells in vitro and in vivo determined by the $^3$H]thymidine incorporation assay and the proliferating cell nuclear antigen staining, respectively. Effects of KGF on expression of several markers for epithelial cell differentiation, including integrin receptor subunits $\alpha$4, $\alpha$5 and $\beta$1, plasmin/trypsin inhibitor, uteroferrin and retinol-binding protein were determined by RT-PCR, Northern and slot blot analyses, and immunohistochemisty, and KGF did not affect epithelial cell differentiation in vitro and in vivo. These results show that KGF does not induce epithelial cell proliferation and differentiation, suggesting that KGF produced by endometrial epithelial cells acts on conceptus trophectoderm in a paracrine manner rather than on endometrial epithelial cells in an autocrine manner.

Expression of Lysophosphatidic Acid Receptor 3 in the Uterine Endometrium of Pigs with Somatic Cell Nuclear Transfer Cloned Conceptuses

  • Seo, Hee-Won;Ka, Hak-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.203-209
    • /
    • 2011
  • Lysophosphatidic acid (LPA) is a small lipid molecule that plays an important role through LPA receptors (LPARs) in reproductive processes. Our previous study has shown maximal expression of LPAR3 in the uterine endometrium on day (D) 12 of pregnancy in pigs, the period when conceptus secretes various molecules such as estrogen and interleukin-$1{\beta}$ (IL1B) and initiates implantation. We determined that endometrial expression of LPAR3 was increased by conceptus estrogen in the previous study, but the effect of IL1B on LPAR3 expression has not been determined. Thus, in this study we examined whether LPAR3 expression was also affected by IL1B. Endometrial explant cultures from D12 of the estrous cycle showed that levels of endometrial LPAR3 expression did not changed in response to IL1B. We also investigated LPAR3 expression in the uterine endometrium on D12 and D30 of pregnancy from gilts with conceptuses derived from somatic cell nuclear transfer (SCNT). The expression of LPAR3 mRNA was lower in endometria from gilts with conceptuses resulting from SCNT compared with those from gilts with embryos resulting from natural mating on D12 of pregnancy, but it was not different between them on D30 of pregnancy. Our results indicate that estrogen of conceptus origin is responsible for induction of LPAR3 expression during the peri-implantation period and appropriate LPA signaling is impaired in the uterine endometrium with SCNT-derived conceptuses during the implantation period in pigs.

Klotho : Expression and Regulation at the Maternal-Conceptus Interface in Pigs

  • Choi, Yohan;Seo, Heewon;Shim, Jangsoo;Hyun, Sang-Hwan;Lee, Eunsong;Ka, Hakhyun
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Klotho (KL) is a single transmembrane protein composed of KL1 and KL2 repeats possessing ${\beta}$-glucuronidase activity and maintains calcium homeostasis in physiological state. It has been implicated in pigs that calcium is important for the establishment and maintenance of pregnancy, and our previous study has shown that transient receptor potential vanilloid type 6 (TRPV6), a calcium ion transporter, is predominantly expressed in the uterine endometrium during pregnancy in pigs. However, expression and function of KL in the uterine endometrium has not been determined in pigs. Thus, the present study determined expression and regulation of KL in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that levels of KL mRNA decreased between Days 12 to 15 of the estrous cycle, and its expression showed a biphasic manner during pregnancy. KL mRNA was expressed in conceptuses and in chorioallantoic tissues during pregnancy. Explant culture study showed that expression levels of KL were not affected by treatment of steroid hormones or interleukin-1beta during the implantation period. Furthermore, levels of KL mRNA in the uterine endometrium from gilts carrying somatic cell nuclear transfer (SCNT)-derived embryos were significantly lower than those from gilts carrying natural mating-derived embryos on Day 12 of pregnancy. These results exhibited that KL was expressed at the maternal-conceptus interface in a pregnancy status- and stage-specific manner, and its expression was affected by SCNT procedure, suggesting that KL may play an important role in the establishment and maintenance of pregnancy in pigs.

Regulation of S100G Expression in the Uterine Endometrium during Early Pregnancy in Pigs

  • Choi, Yo-Han;Seo, Hee-Won;Shim, Jang-Soo;Kim, Min-Goo;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Calcium ions play an important role in the establishment and maintenance of pregnancy, but molecular and cellular regulatory mechanisms of calcium ion action in the uterine endometrium are not fully understood in pigs. Previously, we have shown that calcium regulatory molecules, transient receptor potential vanilloid type 5 (TRPV6) and calbindin-D9k (S100G), are expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and that estrogen of conceptus origin increases endometrial TRPV6 expression. However, regulation of S100G expression in the uterine endometrium and conceptus expression of S100G has been not determined during early pregnancy. Thus, we investigated regulation of S100G expression by estrogen and interleukin-$1{\beta}$ (IL1B) in the uterine endometrium and conceptus expression of S100G during early pregnancy in pigs. We obtained uterine endometrial tissues from day (D) 12 of the estrous cycle and treated with combinations of steroid hormones, estradiol-$17{\beta}$ ($E_2$) and progesterone ($P_4$), and increasing doses of IL1B. Real-time RT-PCR analysis showed that $E_2$ and IL1B increased S100G mRNA levels in the uterine endometrium, and conceptuses expressed S100G mRNA during early pregnancy, as determined by RT-PCR analysis. To determine if endometrial expression of S100G mRNA during the implantation period was affected by the somatic cell nuclear transfer (SCNT) procedure, we compared S100G mRNA levels in the uterine endometrium from gilts with SCNT-derived conceptuses with those from gilts with conceptuses derived from natural mating on D12 of pregnancy. Real-time RT-PCR analysis showed that levels of S100G mRNA in the uterine endometrium from gilts carrying SCNT-derived conceptuses was significantly lower than those from gilts carrying conceptuses derived from natural mating. These results showed that S100G expression in the uterine endometrium was regulated by estrogen and IL1B of conceptus origin, and affected by the SCNT procedure during early pregnancy. These suggest that conceptus signals regulate S100G, an intracellular calcium transport protein, for the establishment of pregnancy in pigs.

Cardiac physiologic regulation of sub-type specific adrenergic receptors in transgenic mice overexpressing β1- and β2-adrenergic receptors.

  • Kim, Ka Eul;Tae, Hyun-Jin;Natalia, Petrashevskaya;Lee, Jae-Chul;Ahn, Ji Hyeon;Park, Joon Ha;Kim, In Hye;Ohk, Taek Geun;Park, Chan Woo;Cho, Jun Hwi;Won, Moo-Ho
    • Clinical and Experimental Emergency Medicine
    • /
    • v.3 no.3
    • /
    • pp.175-180
    • /
    • 2016
  • Objective Combination of ${\beta}_1-adrenergic$ receptor (AR) blockade and ${\beta}_2-AR$ activation might be a potential novel therapy for treating heart failure. However, use of ${\beta}-AR$ agonists and/or antagonists in the clinical setting is controversial because of the lack of information on cardiac inotropic or chronotropic regulation by AR signaling. Methods In this study, we performed hemodynamic evaluation by examining force frequency response (FFR), Frank-Starling relationship, and response to a non-selective ${\beta}-AR$ agonist (isoproterenol) in hearts isolated from 6-month-old transgenic (TG) mice overexpressing ${\beta}_1-$ and ${\beta}_2-ARs$ (${\beta}_1-$ and ${\beta}_2-AR$ TG mice, respectively). Results Cardiac physiologic consequences of ${\beta}_1-$ and ${\beta}_2-AR$ overexpression resulted in similar maximal response to isoproterenol and faster temporary decline of positive inotropic response in ${\beta}_2-AR$ TG mice. ${\beta}_1-AR$ TG mice showed a pronounced negative limb of FFR, whereas ${\beta}_2-AR$ TG mice showed high stimulation frequencies with low contractile depression during FFR. In contrast, Frank-Starling relationship was equally enhanced in both ${\beta}_1-$ and ${\beta}_2-AR$ TG mice. Conclusion Hemodynamic evaluation performed in the present showed a difference in ${\beta}_1-$ and ${\beta}_2-AR$ signaling, which may be due to the difference in the desensitization of ${\beta}_1-$ and ${\beta}_2-ARs$.

The Induction of Somatic Embryogenic Callus from Petals-Derived Callus in Rosa hybrida (국내 육성 장미 품종 꽃잎 유래 체세포배 발생 캘러스 유도)

  • Lee, Su Young;Shin, Ju Young;Lee, Young Ah;Ahn, Chang Ho;Kim, Yae Jin;Park, Pil Man;An, Hye Ryun;Lee, Ka Youn;Jung, Hyun Hwan
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.652-658
    • /
    • 2022
  • This study was conducted to induce somatic embryogenic callus (SEC) derived from petals in rose. The petal explants of 3 cultivars ('Ice Wing', 'Orange Eye' and 'Pink Beauty') with different flower colors were placed on three types media (MS, SH and WPM) supplemented with 11 mg/L 2,4-D, respectively, and then cultured in the dark for 47 days. Calluses were formed at explants of all three cultivars. Also, 'Ice Wing', which were cultured in the SH as the basal medium, showed the highest callus formation rate. However, somatic embryos were generated from only petal-derived callus of 'Ice Wing', which were induced on the WPM as the basal medium, transferred it to SH basal medium supplemented with 3 mg/L 2,4-D, and 300 mg/L L-proline, and cultured for 5 weeks. The SEC has been proliferated every four weeks at the subculture interval. In addition, as a results of making a comparison of expression of RhSERK3 and RhSERK4, which is used as signal for generation of somatic embryo from callus in rose, between the SEC and petal-derived callus from 'Ice Wing' by RT-qPCR, the former showed 10 times higher RhSERK3 expression and 700 times higher RhSERK4 expression than the latter.