• Title/Summary/Keyword: K-space trajectory

Search Result 250, Processing Time 0.025 seconds

The Utilization Probability Model of Expressway Service Area based on Individual Travel Behaviors Using Vehicle Trajectory Data (차량궤적자료를 활용한 통행행태 기반 고속도로 휴게소 이용 확률 모형 개발)

  • Bang, DaeHwan;Lee, YoungIhn;Chang, HyunHo;Han, DongHee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.63-75
    • /
    • 2018
  • A Service Area plays an important role in preventing accidents in advance by creating a space for long distance drivers or drowsy drivers to rest. Therefore, proper positioning of the expressway service area is essential, and it is important to analyze accurate demand forecasting and user travel behavior. Thus, this study analysis travel behavior and developed odel of the probability of using the service area by using the DSRC data collected by the RSE on the highway. According to the analysis, the usage behavior of highway service areas was most frequently when travel time was 90 minutes or more on weekdays and 70 minutes or more on weekends. The utilization rate of the service area estimated from the probability model of use of the rest area in this study was 1 % to 2 % error. The results of this study are meaningful in analyzing the behavior of the use of rest areas using the structured data and can be used as a differentiated strategy for selecting the location of rest areas and enhancing the service level of users.

Autonomous Surveillance-tracking System for Workers Monitoring (작업자 모니터링을 위한 자동 감시추적 시스템)

  • Ko, Jung-Hwan;Lee, Jung-Suk;An, Young-Hwan
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.38-46
    • /
    • 2010
  • In this paper, an autonomous surveillance-tracking system for Workers monitoring basing on the stereo vision scheme is proposed. That is, analysing the characteristics of the cross-axis camera system through some experiments, a optimized stereo vision system is constructed and using this system an intelligent worker surveillance-tracking system is implemented, in which a target worker moving through the environments can be detected and tracked, and its resultant stereo location coordinates and moving trajectory in the world space also can be extracted. From some experiments on moving target surveillance-tracking, it is analyzed that the target's center location after being tracked is kept to be very low error ratio of 1.82%, 1.11% on average in the horizontal and vertical directions, respectively. And, the error ratio between the calculation and measurement values of the 3D location coordinates of the target person is found to be very low value of 2.5% for the test scenario on average. Accordingly, in this paper, a possibility of practical implementation of the intelligent stereo surveillance system for real-time tracking of a target worker moving through the environments and robust detection of the target's 3D location coordinates and moving trajectory in the real world is finally suggested.

The Technique of Human tracking using ultrasonic sensor for Human Tracking of Cooperation robot based Mobile Platform (모바일 플랫폼 기반 협동로봇의 사용자 추종을 위한 초음파 센서 활용 기법)

  • Yum, Seung-Ho;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.638-648
    • /
    • 2020
  • Currently, the method of user-follwoing in intelligent cooperative robots usually based in vision system and using Lidar is common and have excellent performance. But in the closed space of Corona 19, which spread worldwide in 2020, robots for cooperation with medical staff were insignificant. This is because Medical staff are all wearing protective clothing to prevent virus infection, which is not easy to apply with existing research techniques. Therefore, in order to solve these problems in this paper, the ultrasonic sensor is separated from the transmitting and receiving parts, and based on this, this paper propose that estimating the user's position and can actively follow and cooperate with people. However, the ultrasonic sensors were partially applied by improving the Median filter in order to reduce the error caused by the short circuit in communication between hard reflection and the number of light reflections, and the operation technology was improved by applying the curvature trajectory for smooth operation in a small area. Median filter reduced the error of degree and distance by 70%, vehicle running stability was verified through the training course such as 'S' and '8' in the result.

Morphologic Diversities of Sacral Canal in Children;Three-Dimensional Computed Tomographic Study

  • Kim, Dae Wook;Lee, Seung Jun;Choi, Eun Joo;Lee, Pyung Bok;Jo, Young Hyun;Nahm, Francis Sahngun
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • Background: Caudal block is a common technique in children for reducing postoperative pain, and there have been several reports on the variations of the sacral canal in children. However, previous studies have mainly focused on the needle trajectory for caudal block, and there is limited information on the structural variations of the sacrum in children. The purpose of this study was to analyze the anatomic variations of sacral canals in children. Methods: Three-dimensional computed tomographic images were analyzed. The data from the images included (1) fusion of the sacral vertebral laminae and the sacral intervertebral space (2) existence of the sacral cornua and (3) the types of sacral hiatus. The types of sacral hiatus were classified into 3 groups: group I (fusion of S3 or S4 vertebral laminae), group II (unfused vertebral arch with the distance of the S3 and S4 vertebral laminae < 50% of the distance between the cornua), and group III (unfused vertebral arch with the distance of the S3 or S4 vertebral laminae ${\geq}50%$ of the distance between the cornua). Results: A total of 143 children were included in this study. All of the sacral vertebral arches were not fused in 22 children (15.4%). Cornua were not identified bilaterally in 5 (3.5%) and unilaterally in 6 (4.2%) children. In the sacral hiatus, group II and group III were identified in 22 (15.4%) and 31 (21.7%) children, respectively. Conclusions: The sacral canal has various anatomical variations in children. Careful attention must be paid to identify the correct anatomic landmark.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Analysis and Compensation of Time Synchronization Error on SAR Image (시각 동기화 오차가 SAR 영상에 미치는 영향 분석 및 보상)

  • Lee, Soojeong;Park, Woo Jung;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.285-293
    • /
    • 2020
  • In this paper, to improve Synthetic Aperture Radar (SAR) image quality, the effect of time synchronization error in the EGI/IMU (Embedded GPS/INS, Inertial Measurement Unit) integrated system is analyzed and state augmentation is applied to compensate it. EGI/IMU integrated system is widely used as a SAR motion measurement algorithm, which consists of EGI mounted to obtain the trajectory and IMU mounted on the SAR antenna. In an EGI/IMU integrated system, a time synchronization error occurs when the clocks of the sensors are not synchronized. Analysis of the effect of time synchronization error on navigation solutions and SAR images confirmed that the time synchronization error deteriorates SAR image quality. The state augmentation is applied to compensate for this and as a result, the SAR image quality does not decrease. In addition, by analyzing the performance and the observability of the time synchronization error according to the maneuver, it was confirmed that the time-variant maneuver such as rotational motion is necessary to estimate the time synchronization error adequately. In order to reduce the influence of the time synchronization error on the SAR image, the time synchronization error must be compensated by performing maneuver changing over time such as a rotation before SAR operation.

Generation of Indoor Network by Crowdsourcing (크라우드 소싱을 이용한 실내 공간 네트워크 생성)

  • Kim, Bo Geun;Li, Ki-Joune;Kang, Hae-Kyong
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.49-57
    • /
    • 2015
  • Due to high density of population and progress of high building construction technologies, the number of high buildings has been increasing. Several information services have been provided to figure out complex indoor structures of building such as indoor navigations and indoor map services. The most fundamental information for these services are indoor network information. Indoor network in building provides topological connectivity between spaces unlike geometric information of buildings. In order to make indoor network information, we have to edit network manually or derive network properties based on the geometric data of buildings. This process is not easy for complex buildings. In this paper, we suggest a method to generate indoor network automatically based on crowdsourcing. From the collected individual trajectories, we derive indoor network information with crowdsourcing. We validate our method with a sample set of trajectory data and the result shows that our method is practical if the indoor positioning technology is reasonably accurate.

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

Multidimensional Scaling Using the Pseudo-Points Based on Partition Method (분할법에 의한 가상점을 활용한 다차원척도법)

  • Shin, Sang Min;Kim, Eun-Seong;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1171-1180
    • /
    • 2015
  • Multidimensional scaling (MDS) is a graphical technique of multivariate analysis to display dissimilarities among individuals into low-dimensional space. We often have two kinds of MDS which are metric MDS and non-metric MDS. Metric MDS can be applied to quantitative data; however, we need additional information about variables because it only shows relationships among individuals. Gower (1992) proposed a method that can represent variable information using trajectories of the pseudo-points for quantitative variables on the metric MDS space. We will call his method a 'replacement method'. However, the trajectory can not be represented even though metric MDS can be applied to binary data when we apply his method to binary data. Therefore, we propose a method to represent information of binary variables using pseudo-points called a 'partition method'. The proposed method partitions pseudo-points, accounting both the rate of zeroes and ones. Our metric MDS using the proposed partition method can show the relationship between individuals and variables for binary data.

Parallel Gaussian Processes for Gait and Phase Analysis (보행 방향 및 상태 분석을 위한 병렬 가우스 과정)

  • Sin, Bong-Kee
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.748-754
    • /
    • 2015
  • This paper proposes a sequential state estimation model consisting of continuous and discrete variables, as a way of generalizing all discrete-state factorial HMM, and gives a design of gait motion model based on the idea. The discrete state variable implements a Markov chain that models the gait dynamics, and for each state of the Markov chain, we created a Gaussian process over the space of the continuous variable. The Markov chain controls the switching among Gaussian processes, each of which models the rotation or various views of a gait state. Then a particle filter-based algorithm is presented to give an approximate filtering solution. Given an input vector sequence presented over time, this finds a trajectory that follows a Gaussian process and occasionally switches to another dynamically. Experimental results show that the proposed model can provide a very intuitive interpretation of video-based gait into a sequence of poses and a sequence of posture states.