• 제목/요약/키워드: K-space

검색결과 26,727건 처리시간 0.052초

Spectroscopic Observations of Saturn with SpeX/IRTF

  • Kim, Joo-Hyeon;Kim, Sang-Joon;Park, Soo-Jong;Keith Noll;Tom Geballe;Kim, Min-Jin;Lee, Sung-Ho;Son, Dong-Hoon
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2003년도 한국우주과학회보 제12권1호
    • /
    • pp.69-69
    • /
    • 2003
  • No Abstract, See Full Text

  • PDF

K-GMT Science Program in 2016 and Future Prospect

  • Hwang, Narae;Kim, Minjin;Lee, Jae-Joon;Kim, Hwihyun;Lee, Ho-Gyu;Yang, Soung-Chul;Park, Byeong-Gon
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.58.1-58.1
    • /
    • 2016
  • K-GMT Science Program, operated by Center for Large Telescopes (CfLAT) in Korea Astronomy and Space Science Institute (KASI), aims to promote the scientific researches by providing the access to the observational facilities such as 4-8m class telescopes and specialized instruments. In 2016, we plan to make various instruments with MMT and Gemini Observatory as well as IGRINS with 2.7m HJS Telescope in McDonald Observatory available to Korean Astronomical Community. We will present the current status and future prospect as well as some early results made from the K-GMT Science Program in past years.

  • PDF

Development of SPICA FPC

  • Lee, Dae-Hee;Jeong, Woong-Seob;Matsumoto, Toshio;Lee, Hyung-Mok;Park, Young-Sik;Ree, Chang-Hee;Moon, Bong-Gon;Pyo, Jeong-Hyun;Park, Sung-Jun;Han, Won-Yong;Kim, Geon-Hee;Takeyama, Norihide
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.57.1-57.1
    • /
    • 2010
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) is a next generation infrared space telescope being prepared by JAXA, ESA and other international collaborators. We propose to develop FPC (Focal Plane Camera) consisting of two near-infrared cameras: FPC-G (I band) for focal plane guidance and FPC-S (0.7 - 5 um) for a back-up of FPC-G and a NIR instrument for scientific observations. In this talk, we introduce the requirement and the design concept of the FPC as well as the development strategy of the project.

  • PDF

A Study on Re-entry Predictions of Uncontrolled Space Objects for Space Situational Awareness

  • Choi, Eun-Jung;Cho, Sungki;Lee, Deok-Jin;Kim, Siwoo;Jo, Jung Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권4호
    • /
    • pp.289-302
    • /
    • 2017
  • The key risk analysis technologies for the re-entry of space objects into Earth's atmosphere are divided into four categories: cataloguing and databases of the re-entry of space objects, lifetime and re-entry trajectory predictions, break-up models after re-entry and multiple debris distribution predictions, and ground impact probability models. In this study, we focused on reentry prediction, including orbital lifetime assessments, for space situational awareness systems. Re-entry predictions are very difficult and are affected by various sources of uncertainty. In particular, during uncontrolled re-entry, large spacecraft may break into several pieces of debris, and the surviving fragments can be a significant hazard for persons and properties on the ground. In recent years, specific methods and procedures have been developed to provide clear information for predicting and analyzing the re-entry of space objects and for ground-risk assessments. Representative tools include object reentry survival analysis tool (ORSAT) and debris assessment software (DAS) developed by National Aeronautics and Space Administration (NASA), spacecraft atmospheric re-entry and aerothermal break-up (SCARAB) and debris risk assessment and mitigation analysis (DRAMA) developed by European Space Agency (ESA), and semi-analytic tool for end of life analysis (STELA) developed by Centre National d'Etudes Spatiales (CNES). In this study, various surveys of existing re-entry space objects are reviewed, and an efficient re-entry prediction technique is suggested based on STELA, the life-cycle analysis tool for satellites, and DRAMA, a re-entry analysis tool. To verify the proposed method, the re-entry of the Tiangong-1 Space Lab, which is expected to re-enter Earth's atmosphere shortly, was simulated. Eventually, these results will provide a basis for space situational awareness risk analyses of the re-entry of space objects.