• Title/Summary/Keyword: K-path algorithm

Search Result 1,277, Processing Time 0.033 seconds

An Evolutionary Algorithm for Determining the k Most Vital Arcs in Shortest Path Problem (최단경로문제에서 k개의 치명호를 결정하는 유전알고리듬)

  • 정호연
    • Journal of the military operations research society of Korea
    • /
    • v.26 no.2
    • /
    • pp.120-130
    • /
    • 2000
  • The purpose of this study is to present a method for determining the k most vital arcs in shortest path problem using an evolutionary algorithm. The problem of finding the k most vital arcs in shortest path problem is to find a set of k arcs whose simultaneous removal from the network causes the greatest increase in the total length of shortest path. Generally, the problem determining the k most vital arcs in shortest path problem has known as NP-hard. Therefore, in order to deal with the problem of real world the heuristic algorithm is needed. In this study we propose to the method of finding the k most vital arcs in shortest path problem using an evolutionary algorithm which known as the most efficient algorithm among heuristics. The method presented in this study is developed using the library of the evolutionary algorithm framework and then the performance of algorithm is analyzed through the computer experiment.

  • PDF

A Path Generation Algorithm of an Automatic Guided Vehicle Using Sensor Scanning Method

  • Park, Tong-Jin;Ahn, Jung-Woo;Han, Chang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • In this paper, a path generation algorithm that uses sensor scannings is described. A scanning algorithm for recognizing the ambient environment of the Automatic Guided Vehicle (AGV) that uses the information from the sensor platform is proposed. An algorithm for computing the real path and obstacle length is developed by using a scanning method that controls rotating of the sensors on the platform. The AGV can recognize the given path by adopting this algorithm. As the AGV with two-wheel drive constitute a nonholonomic system, a linearized kinematic model is applied to the AGV motor control. An optimal controller is designed for tracking the reference path which is generated by recognizing the path pattern. Based on experimental results, the proposed algorithm that uses scanning with a sensor platform employing only a small number of sensors and a low cost controller for the AGV is shown to be adequate for path generation.

A Local Path Planning Algorithm considering the Mobility of UGV based on the Binary Map (무인차량의 주행성능을 고려한 장애물 격자지도 기반의 지역경로계획)

  • Lee, Young-Il;Lee, Ho-Joo;Ko, Jung-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • A fundamental technology of UGV(Unmanned Ground Vehicle) to perform a given mission with success in various environment is a path planning method which generates a safe and optimal path to the goal. In this paper, we suggest a local path-planning method of UGV based on the binary map using world model data which is gathered from terrain perception sensors. In specially, we present three core algorithms such as shortest path computation algorithm, path optimization algorithm and path smoothing algorithm those are used in the each composition module of LPP component. A simulation is conducted with M&S(Modeling & Simulation) system in order to verify the performance of each core algorithm and the performance of LPP component with scenarios.

Real-time Hybrid Path Planning Algorithm for Mobile Robot (이동로봇을 위한 실시간 하이브리드 경로계획 알고리즘)

  • Lee, Donghun;Kim, Dongsik;Yi, Jong-Ho;Kim, Dong W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • Mobile robot has been studied for long time due to its simple structure and easy modeling. Regarding path planning of the mobile robot, we suggest real-time hybrid path planning algorithm which is the combination of optimal path planning and real-time path planning in this paper. Real-time hybrid path planning algorithm modifies, finds best route, and saves calculating time. It firstly plan the route with real-time path planning then robot starts to move according to the planned route. While robot is moving, update the route as the best outcome which found by optimal path planning algorithm. Verifying the performance of the proposed method through the comparing real-time hybrid path planning with optimal path planning will be done.

A Path Navigation Algorithm for an Autonomous Robot Vehicle by Sensor Scanning (센서 스캐닝에 의한 자율주행로봇의 경로주행 알고리즘)

  • Park, Dong-Jin;An, Jeong-U;Han, Chang-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.147-154
    • /
    • 2002
  • In this paper, a path navigation algorithm through use of a sensor platform is proposed. The sensor platform is composed of two electric motors which make panning and tilting motions. An algorithm for computing a real path and an obstacle length is developed by using a scanning method that controls rotation of the sensors on the platform. An Autonomous Robot Vehicle(ARV) can perceive the given path by adapting this algorithm. A sensor scanning method is applied to the sensor platform for using small numbers of sensor. The path navigation algorithm is composed of two parts. One is to perceive a path pattern, the other is used to avoid an obstacle. An optimal controller is designed for tracking the reference path which is generated by perceiving the path pattern. The ARV is operated using the optimal controller and the path navigation algorithm. Based on the results of actual experiments, this algorithm for an ARV proved sufficient for path navigation by small number of sensors and for a low cost controller by using the sensor platform with a scanning method.

Path Planning Algorithm Using the Particle Swarm Optimization and the Improved Dijkstra Algorithm

  • Kang, Hwan-Il;Lee, Byung-Hee;Jang, Woo-Seok
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.176-179
    • /
    • 2007
  • In this paper, we develop the path planning algorithm using the improved Dijkstra algorithm and the particle swarm optimization. To get the optimal path, at first we construct the MAKLINK on the world environment and then make a graph associated with the MAKLINK. From the graph, we obtain the Dijkstra path between the starting point and the destination point. From the optimal path, we search the improved Dijkstra path using the graph. Finally, applying the particle swarm optimization to the improved Dijkstra path, we obtain the optimal path for the mobile robot. It turns out that the proposed method has better performance than the result in [1].

  • PDF

A UGV Hybrid Path Generation Method by using B-spline Curve's Control Point Selection Algorithm (무인 주행 차량의 하이브리드 경로 생성을 위한 B-spline 곡선의 조정점 선정 알고리즘)

  • Lee, Hee-Mu;Kim, Min-Ho;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.138-142
    • /
    • 2014
  • This research presents an A* based algorithm which can be applied to Unmanned Ground Vehicle self-navigation in order to make the driving path smoother. Based on the grid map, A* algorithm generated the path by using straight lines. However, in this situation, the knee points, which are the connection points when vehicle changed orientation, are created. These points make Unmanned Ground Vehicle continuous navigation unsuitable. Therefore, in this paper, B-spline curve function is applied to transform the path transfer into curve type. And because the location of the control point has influenced the B-spline curve, the optimal control selection algorithm is proposed. Also, the optimal path tracking speed can be calculated through the curvature radius of the B-spline curve. Finally, based on this algorithm, a path created program is applied to the path results of the A* algorithm and this B-spline curve algorithm. After that, the final path results are compared through the simulation.

Development of evolutionary algorithm for determining the k most vital arcs in shortest path problem

  • Chung, Hoyeon;Shin, Dongju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.113-116
    • /
    • 2000
  • The purpose of this study is to present a method for determining the k most vital arcs in shortest path problem using an evolutionary algorithm. The problem of finding the k most vital arcs in shortest path problem is to find a set of k arcs whose simultaneous removal from the network causes the greatest increase in the total length of shortest path. The problem determining the k most vital arcs in shortest path problem has known as NP-hard. Therefore, in order to deal with the problem of real world the heuristic algorithm is needed. In this study we propose to the method of finding the k-MVA in shortest path problem using an evolutionary algorithm which known as the most efficient algorithm among heuristics. For this, the expression method of individuals compatible with the characteristics of shortest path problem, the parameter values of constitution gene, size of the initial population, crossover rate and mutation rate etc. are specified and then the effective genetic algorithm will be proposed. The method presented in this study is developed using the library of the evolutionary algorithm framework (EAF) and then the performance of algorithm is analyzed through the computer experiment.

  • PDF

Optimal Acoustic Search Path Planning Based on Genetic Algorithm in Discrete Path System (이산 경로 시스템에서 유전알고리듬을 이용한 최적음향탐색경로 전략)

  • CHO JUNG-HONG;KIM JUNG-HAE;KIM JEA-SOO;LIM JUN-SEOK;KIM SEONG-IL;KIM YOUNG-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.69-76
    • /
    • 2006
  • The design of efficient search path to maximize the Cumulative Detection Probability(CDP) is mainly dependent on experience and intuition when searcher detect the target using SONAR in the ocean. Recently with the advance of modeling and simulation method, it has been possible to access the optimization problems more systematically. In this paper, a method for the optimal search path calculation is developed based on the combination of the genetic algorithm and the calculation algorithm for detection range. We consider the discrete system for search path, space, and time, and use the movement direction of the SONAR for the gene of the genetic algorithm. The developed algorithm, OASPP(Optimal Acoustic Search Path Planning), is shown to be effective, via a simulation, finding the optimal search path for the case when the intuitive solution exists. Also, OASPP is compared with other algorithms for the measure of efficiency to maximize CDP.

Genetic Algorithm Based 3D Environment Local Path Planning for Autonomous Driving of Unmanned Vehicles in Rough Terrain (무인 차량의 험지 자율주행을 위한 유전자 알고리즘 기반 3D 환경 지역 경로계획)

  • Yun, SeungJae;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.803-812
    • /
    • 2017
  • This paper proposes a local path planning method for stable autonomous driving in rough terrain. There are various path planning techniques such as candidate paths, star algorithm, and Rapidly-exploring Random Tree algorithms. However, such existing path planning has limitations to reflecting the stability of unmanned ground vehicles. This paper suggest a path planning algorithm that considering the stability of unmanned ground vehicles. The algorithm is based on the genetic algorithm and assumes to have probability based obstacle map and elevation map. The simulation result show that the proposed algorithm can be used for real-time local path planning in rough terrain.