• Title/Summary/Keyword: K-nearest neighbor classification

Search Result 187, Processing Time 0.033 seconds

A Study on the Measurement of Respiratory Rate Using Image Alignment and Statistical Pattern Classification (영상 정합 및 통계학적 패턴 분류를 이용한 호흡률 측정에 관한 연구)

  • Moon, Sujin;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.10
    • /
    • pp.63-70
    • /
    • 2018
  • Biomedical signal measurement technology using images has been developed, and researches on respiration signal measurement technology for maintaining life have been continuously carried out. The existing technology measured respiratory signals through a thermal imaging camera that measures heat emitted from a person's body. In addition, research was conducted to measure respiration rate by analyzing human chest movement in real time. However, the image processing using the infrared thermal image may be difficult to detect the respiratory organ due to the external environmental factors (temperature change, noise, etc.), and thus the accuracy of the measurement of the respiration rate is low.In this study, the images were acquired using visible light and infrared thermal camera to enhance the area of the respiratory tract. Then, based on the two images, features of the respiratory tract region are extracted through processes such as face recognition and image matching. The pattern of the respiratory signal is classified through the k-nearest neighbor classifier, which is one of the statistical classification methods. The respiration rate was calculated according to the characteristics of the classified patterns and the possibility of breathing rate measurement was verified by analyzing the measured respiration rate with the actual respiration rate.

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Emotion Recognition in Arabic Speech from Saudi Dialect Corpus Using Machine Learning and Deep Learning Algorithms

  • Hanaa Alamri;Hanan S. Alshanbari
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.9-16
    • /
    • 2023
  • Speech can actively elicit feelings and attitudes by using words. It is important for researchers to identify the emotional content contained in speech signals as well as the sort of emotion that resulted from the speech that was made. In this study, we studied the emotion recognition system using a database in Arabic, especially in the Saudi dialect, the database is from a YouTube channel called Telfaz11, The four emotions that were examined were anger, happiness, sadness, and neutral. In our experiments, we extracted features from audio signals, such as Mel Frequency Cepstral Coefficient (MFCC) and Zero-Crossing Rate (ZCR), then we classified emotions using many classification algorithms such as machine learning algorithms (Support Vector Machine (SVM) and K-Nearest Neighbor (KNN)) and deep learning algorithms such as (Convolution Neural Network (CNN) and Long Short-Term Memory (LSTM)). Our Experiments showed that the MFCC feature extraction method and CNN model obtained the best accuracy result with 95%, proving the effectiveness of this classification system in recognizing Arabic spoken emotions.

Comparative Study of PSO-ANN in Estimating Traffic Accident Severity

  • Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.95-100
    • /
    • 2023
  • Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.

Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire (경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구)

  • Song, In;Lee, Geon-Mok;Hong, Kwon-Eui
    • Journal of Acupuncture Research
    • /
    • v.28 no.3
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.

Performance comparison of machine learning classification methods for decision of disc cutter replacement of shield TBM (쉴드 TBM 디스크 커터 교체 유무 판단을 위한 머신러닝 분류기법 성능 비교)

  • Kim, Yunhee;Hong, Jiyeon;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • In recent years, Shield TBM construction has been continuously increasing in domestic tunnels. The main excavation tool in the shield TBM construction is a disc cutter which naturally wears during the excavation process and significantly degrades the excavation efficiency. Therefore, it is important to know the appropriate time of the disc cutter replacement. In this study, it is proposed a predictive model that can determine yes/no of disc cutter replacement using machine learning algorithm. To do this, the shield TBM machine data which is highly correlated to the disc cutter wears and the disc cutter replacement from the shield TBM field which is already constructed are used as the input data in the model. Also, the algorithms used in the study were the support vector machine, k-nearest neighbor algorithm, and decision tree algorithm are all classification methods used in machine learning. In order to construct an optimal predictive model and to evaluate the performance of the model, the classification performance evaluation index was compared and analyzed.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms

  • Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.38-53
    • /
    • 2023
  • Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.

Classifying Cancer Using Partially Correlated Genes Selected by Forward Selection Method (전진선택법에 의해 선택된 부분 상관관계의 유전자들을 이용한 암 분류)

  • 유시호;조성배
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.83-92
    • /
    • 2004
  • Gene expression profile is numerical data of gene expression level from organism measured on the microarray. Generally, each specific tissue indicates different expression levels in related genes, so that we can classify cancer with gene expression profile. Because not all the genes are related to classification, it is needed to select related genes that is called feature selection. This paper proposes a new gene selection method using forward selection method in regression analysis. This method reduces redundant information in the selected genes to have more efficient classification. We used k-nearest neighbor as a classifier and tested with colon cancer dataset. The results are compared with Pearson's coefficient and Spearman's coefficient methods and the proposed method showed better performance. It showed 90.3% accuracy in classification. The method also successfully applied to lymphoma cancer dataset.

Improving of kNN-based Korean text classifier by using heuristic information (경험적 정보를 이용한 kNN 기반 한국어 문서 분류기의 개선)

  • Lim, Heui-Seok;Nam, Kichun
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2002
  • Automatic text classification is a task of assigning predefined categories to free text documents. Its importance is increased to organize and manage a huge amount of text data. There have been some researches on automatic text classification based on machine learning techniques. While most of them was focused on proposal of a new machine learning methods and cross evaluation between other systems, a through evaluation or optimization of a method has been rarely been done. In this paper, we propose an improving method of kNN-based Korean text classification system using heuristic informations about decision function, the number of nearest neighbor, and feature selection method. Experimental results showed that the system with similarity-weighted decision function, global method in considering neighbors, and DF/ICF feature selection was more accurate than simple kNN-based classifier. Also, we found out that the performance of the local method with well chosen k value was as high as that of the global method with much computational costs.

  • PDF