• 제목/요약/키워드: K-nearest neighbor classification

검색결과 187건 처리시간 0.025초

열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식 (Person Recognition Using Gait and Face Features on Thermal Images)

  • 김사문;이대종;이호현;전명근
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.

지형정보를 이용한 유효토심 분류방법비교 (Comparison of Effective Soil Depth Classification Methods Using Topographic Information)

  • 김병수;최주성;이자경;정나영;김태형
    • 한국지반신소재학회논문집
    • /
    • 제22권2호
    • /
    • pp.1-12
    • /
    • 2023
  • 국내외적으로 다양한 산사태 발생원인 분석과 취약지역의 예측이 이루어지고 있다. 본 연구에서는 산사태에서 발생하는 재해의 분석 및 예측에 사용되는 많은 특성 중 필수적인 요소인 유효토심을 지형정보를 이용해 예측했다. 지형정보 데이터를 각 기관별로 획득한 후 100m × 100m의 격자에 속성정보로 할당하고 데이터 등급화를 통해 차원을 축소 시켜주었다. 분류기준으로 3개 깊이(얕음, 보통, 깊음)와 5개 깊이(매우 얕음, 얕음, 보통, 깊음, 아주 깊음)의 두 가지 경우에 대해 유효토심을 예측했다. K-최근접 이웃, 랜덤 포레스트, 심층인공신경망 모델을 통해 예측하고 정확도, 정밀도, 재현율, F1-점수를 계산해 그 성능을 비교했다. 예측결과 모델에 따라 50% 후반에서 70% 초반의 성능을 보였다. 3개 분류기준의 정확도가 5개 분류기준의 정확도보다 5% 정도 높았다. 본 연구에서 제시한 등급화 기준과 분류모델의 성능은 아직 미흡하지만 유효토심의 예측에 있어서 분류모델의 적용이 가능하다고 판단된다. 큰 지역을 획일적으로 가정하여 사용하는 현재의 유효토심보다 신뢰성 있는 값의 예측이 가능하다고 사료된다.

Inverted Index based Modified Version of KNN for Text Categorization

  • Jo, Tae-Ho
    • Journal of Information Processing Systems
    • /
    • 제4권1호
    • /
    • pp.17-26
    • /
    • 2008
  • This research proposes a new strategy where documents are encoded into string vectors and modified version of KNN to be adaptable to string vectors for text categorization. Traditionally, when KNN are used for pattern classification, raw data should be encoded into numerical vectors. This encoding may be difficult, depending on a given application area of pattern classification. For example, in text categorization, encoding full texts given as raw data into numerical vectors leads to two main problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string vectors, and modify the supervised learning algorithms adaptable to string vectors for text categorization.

Speech Emotion Recognition with SVM, KNN and DSVM

  • Hadhami Aouani ;Yassine Ben Ayed
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.40-48
    • /
    • 2023
  • Speech Emotions recognition has become the active research theme in speech processing and in applications based on human-machine interaction. In this work, our system is a two-stage approach, namely feature extraction and classification engine. Firstly, two sets of feature are investigated which are: the first one is extracting only 13 Mel-frequency Cepstral Coefficient (MFCC) from emotional speech samples and the second one is applying features fusions between the three features: Zero Crossing Rate (ZCR), Teager Energy Operator (TEO), and Harmonic to Noise Rate (HNR) and MFCC features. Secondly, we use two types of classification techniques which are: the Support Vector Machines (SVM) and the k-Nearest Neighbor (k-NN) to show the performance between them. Besides that, we investigate the importance of the recent advances in machine learning including the deep kernel learning. A large set of experiments are conducted on Surrey Audio-Visual Expressed Emotion (SAVEE) dataset for seven emotions. The results of our experiments showed given good accuracy compared with the previous studies.

주성분 분석을 활용한 적응형 근전도 패턴 인식 알고리즘 (Adaptive sEMG Pattern Recognition Algorithm using Principal Component Analysis)

  • 김세진;정완균
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.254-265
    • /
    • 2024
  • Pattern recognition for surface electromyogram (sEMG) suffers from its nonstationary and stochastic property. Although it can be relieved by acquiring new training data, it is not only time-consuming and burdensome process but also hard to set the standard when the data acquisition should be held. Therefore, we propose an adaptive sEMG pattern recognition algorithm using principal component analysis. The proposed algorithm finds the relationship between sEMG channels and extracts the optimal principal component. Based on the relative distance, the proposed algorithm determines whether to update the existing patterns or to register the new pattern. From the experimental result, it is shown that multiple patterns are generated from the sEMG data stream and they are highly related to the motion. Furthermore, the proposed algorithm has shown higher classification accuracy than k-nearest neighbor (k-NN) and support vector machine (SVM). We expect that the proposed algorithm is utilized for adaptive and long-lasting pattern recognition.

손목 움직임 추정을 위한 Gaussian Mixture Model 기반 표면 근전도 패턴 분류 알고리즘 (A Gaussian Mixture Model Based Surface Electromyogram Pattern Classification Algorithm for Estimation of Wrist Motions)

  • 정의철;유송현;이상민;송영록
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권2호
    • /
    • pp.65-71
    • /
    • 2012
  • In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).

k-NN 분류 모델의 학습 데이터 구성에 따른 PIC 보의 하중 충실도 향상에 관한 연구 (Load Fidelity Improvement of Piecewise Integrated Composite Beam by Construction Training Data of k-NN Classification Model)

  • 함석우;전성식
    • Composites Research
    • /
    • 제33권3호
    • /
    • pp.108-114
    • /
    • 2020
  • Piecewise Integrated Composite (PIC) 보는 하중 유형에 따라 구간을 나누어, 각 구간마다 하중 유형에 강한 복합재료의 적층 순서를 배열한 보이다. 본 연구는 PIC 보의 구간을 머신 러닝의 일종인 k-NN(k-Nearest Neighbor) 분류를 통해 나누어 기존에 제시되었던 PIC 보에 비해 우수한 굽힘 특성을 갖게 하는 것이 목적이다. 먼저, 알루미늄 보의 3점 굽힘 해석을 통하여 참조점에서의 3축 특성(Triaxiality) 값 데이터를 얻었고, 이를 통해 인장, 전단, 압축의 레이블을 가진 학습 데이터가 만들어진다. 학습 데이터를 통해 각 면마다 독립적인 k-NN 분류 모델을 구성하는 방법(Each plane)과 전체 면에 대한 k-NN 분류 모델을 구성하는 방법(one part)을 이용하여 k-NN 분류 모델을 생성하였고, 하이퍼파라미터의 튜닝을 통하여 다양한 하중 충실도를 도출하였다. 가장 높은 하중 충실도를 가진 k-NN 분류 모델을 기반으로 보를 매핑(mapping)하였고, PIC 보에 대하여 유한요소 해석을 진행한 결과, 기존에 제시되었던 PIC 보에 비해 최대하중과 흡수 에너지가 커지는 특성을 보였다. 하중 충실도를 수동으로 조절하여 100%로 만든 PIC 보와 비교하였을 때, 최대하중과 흡수에너지가 미소한 차이가 나타났으며 이는 타당한 하중 충실도로 보여진다.

근전도 신호 기반 손목 움직임 패턴 분류 알고리즘에 대한 연구 (Pattern Classification Algorithm for Wrist Movements based on EMG)

  • 최항적;김유현;심현민;윤광섭;이상민
    • 재활복지공학회논문지
    • /
    • 제7권2호
    • /
    • pp.69-74
    • /
    • 2013
  • 본 연구에서는 손목 움직임의 추정을 위한 근전도 신호 기반 동작 분류 알고리즘을 제안한다. 근전도의 특징점을 추출하기 위하여 절대차분표준편차(DASDV)과 제곱평균제곱근(RMS)을 사용하며, 측정 된 근전도 신호를 이용하여 동작 마다 30개의 특징점(RMS, DASDV)을 추출한다. 근전도 신호를 특정한 패턴으로 나타내어 적용시키기 위하여 평균값을 기준으로 집단을 두 부분으로 나누고, 패턴분류 방법인 k-NN으로 패턴을 학습시킨 후, 집단을 나누지 않은 방법을 사용한 기존의 연구와 비교하여 제안한 알고리즘의 성능을 검증한다. 실험결과 제안한 알고리즘은 92.59%의 인식률을 보였으며, 이전 연구 결과보다 0.84% 포인트의 성능 개선을 보였다.

  • PDF

회전기계 고장 진단에 적용한 인공 신경회로망과 통계적 패턴 인식 기법의 비교 연구 (A Comparison of Artificial Neural Networks and Statistical Pattern Recognition Methods for Rotation Machine Condition Classification)

  • 김창구;박광호;기창두
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.119-125
    • /
    • 1999
  • This paper gives an overview of the various approaches to designing statistical pattern recognition scheme based on Bayes discrimination rule and the artificial neural networks for rotating machine condition classification. Concerning to Bayes discrimination rule, this paper contains the linear discrimination rule applied to classification into several multivariate normal distributions with common covariance matrices, the quadratic discrimination rule under different covariance matrices. Also we discribes k-nearest neighbor method to directly estimate a posterior probability of each class. Five features are extracted in time domain vibration signals. Employing these five features, statistical pattern classifier and neural networks have been established to detect defects on rotating machine. Four different cases of rotation machine were observed. The effects of k number and neural networks structures on monitoring performance have also been investigated. For the comparison of diagnosis performance of these two method, their recognition success rates are calculated form the test data. The result of experiment which classifies the rotating machine conditions using each method presents that the neural networks shows the highest recognition rate.

  • PDF

근전도 신호기반 손목 움직임의 추정을 위한 다중 특징점 추출 기법 알고리즘 (Improvements of Multi-features Extraction for EMG for Estimating Wrist Movements)

  • 김서준;정의철;이상민;송영록
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.757-762
    • /
    • 2012
  • In this paper, the multi feature extraction algorithm for estimation of wrist movements based on Electromyogram(EMG) is proposed. For the extraction of precise features from the EMG signals, the difference absolute mean value(DAMV), the mean absolute value(MAV), the root mean square(RMS) and the difference absolute standard deviation value(DASDV) to consider amplitude characteristic of EMG signals are used. We figure out a more accurate feature-set by combination of two features out of these, because of multi feature extraction algorithm is more precise than single feature method. Also, for the motion classification based on EMG, the linear discriminant analysis(LDA), the quadratic discriminant analysis(QDA) and k-nearest neighbor(k-NN) are used. We implemented a test targeting twenty adult male to identify the accuracy of EMG pattern classification of wrist movements such as up, down, right, left and rest. As a result of our study, the LDA, QDA and k-NN classification method using feature-set with MAV and DASDV showed respectively 87.59%, 89.06%, 91.75% accuracy.