Case-based reasoning (CBR) often shows significant promise for improving effectiveness of complex and unstructured decision making. Consequently, it has been applied to various problem-solving areas including manufacturing, finance and marketing. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still challenging issue. Most of previous studies to improve the effectiveness for CBR have focused on the similarity function or optimization of case features and their weights. However, according to some of prior researches, finding the optimal k parameter for k-nearest neighbor (k-NN) is also crucial to improve the performance of CBR system. Nonetheless, there have been few attempts which have tried to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the new model to the real-world case provided by an online shopping mall in Korea. Experimental results show that a GA-optimized k-NN approach outperforms other AI techniques for purchasing behavior forecasting.
In this paper, the Gaussian Mixture Model(GMM) which is very robust modeling for pattern classification is proposed to classify wrist motions using surface electromyograms(EMG). EMG is widely used to recognize wrist motions such as up, down, left, right, rest, and is obtained from two electrodes placed on the flexor carpi ulnaris and extensor carpi ulnaris of 15 subjects under no strain condition during wrist motions. Also, EMG-based feature is derived from extracted EMG signals in time domain for fast processing. The estimated features based in difference absolute mean value(DAMV) are used for motion classification through GMM. The performance of our approach is evaluated by recognition rates and it is found that the proposed GMM-based method yields better results than conventional schemes including k-Nearest Neighbor(k-NN), Quadratic Discriminant Analysis(QDA) and Linear Discriminant Analysis(LDA).
텍스트 데이터는 일반적으로 많은 다양한 단어들로 구성되어 있다. 평범한 텍스트 데이터의 경우에도 수만 개의 서로 다른 단어들을 포함하고 있는 경우를 흔히 관찰할 수 있으며 방대한 양의 텍스트 데이터에서는 수십만 개에 이르는 고유한 단어들이 포함되어 있는 경우도 있다. 텍스트 데이터를 전처리하여 문서-단어 행렬을 만드는 경우 고유한 단어를 하나의 변수로 간주하게 되는데 이렇게 많은 단어들을 각각 하나의 변수로 간주한다면 텍스트 데이터는 매우 많은 변수를 가진 데이터로 볼 수 있다. 한편, 텍스트 데이터의 분류 문제에서는 분류의 목표변수가 되는 범주의 비중에 큰 차이가 나는 불균형 데이터 문제를 자주 접하게 된다. 이렇게 범주의 비중에 큰 차이가 있는 불균형 데이터의 경우에는 일반적인 분류모형의 성능이 크게 저하될 수 있다는 사실이 잘 알려져 있다. 따라서 불균형 데이터에서의 분류 성능을 개선하기 위해 소수집단의 관측값들을 합성하여 소수집단에 포함되는 새로운 관측값을 생성하는 합성과표집기법(synthetic over-sampling technique; SMOTE) 등의 알고리즘을 적용할 수 있다. SMOTE는 k-최근접이웃(k-nearset neighbor; kNN) 알고리즘을 이용하여 새로운 합성 데이터를 생성하는데 텍스트 데이터와 같이 많은 변수를 가진 데이터의 경우에는 오차가 누적되어 kNN의 성능에 문제가 생길 수 있다. 이 논문에서는 변수선택을 통해 변수가 많은 불균형 텍스트 데이터를 오차가 축소된 공간에 표현하고 이 공간에서 새로운 합성 관측값을 생성하여 불균형 텍스트 데이터에서 소수 범주에 대한 SVM 분류모형의 예측 성능을 향상시키는 방법을 제안한다.
To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.
High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.
Temporal medical data is often collected during patient treatments that require personal analysis. Each observation recorded in the temporal medical data is associated with measurements and time treatments. A major problem in the analysis of temporal medical data are the missing values that are caused, for example, by patients dropping out of a study before completion. Therefore, the imputation of missing data is an important step during pre-processing and can provide useful information before the data is mined. For each patient and each variable, this imputation replaces the missing data with a value drawn from an estimated distribution of that variable. In this paper, we propose a new method, called Newton's finite divided difference polynomial interpolation with condition order degree, for dealing with missing values in temporal medical data related to obesity. We compared the new imputation method with three existing subspace estimation techniques, including the k-nearest neighbor, local least squares, and natural cubic spline approaches. The performance of each approach was then evaluated by using the normalized root mean square error and the statistically significant test results. The experimental results have demonstrated that the proposed method provides the best fit with the smallest error and is more accurate than the other methods.
The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.
The accuracy of classifying pixels in HIRIS images is usually degraded by noisy bands since noisy bands may deform the typical shape of spectral reflectance. Proposed in this paper is a statistical method for noisy band removal which mainly makes use of the correlation coefficients between bands. Considering each band as a random variable, the correlation coefficient measures the strength and direction of a linear relationship between two random variables. While the correlation between two signal bands is high, existence of a noisy band will produce a low correlation due to ill-correlativeness and undirectedness. The application of the correlation coefficient as a measure for detecting noisy bands is under a two-pass screening scheme. This method is independent of the prior knowledge of the sensor or the cause resulted in the noise. The classification in this experiment uses the unsupervised k-nearest neighbor algorithm in accordance with the well-accepted Euclidean distance measure and the spectral angle mapper measure. This paper also proposes a hierarchical combination of these measures for spectral matching. Finally, a separability assessment based on the between-class and within-class scatter matrices is followed to evaluate the performance.
In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.
In this paper, we present an ontology-based approach to labeling influential topics of scientific articles. First, to look for influential topics from scientific article, topic modeling is performed, and then social network analysis is applied to the selected topic models. Abstracts of research papers related to data mining published over the 20 years from 1995 to 2015 are collected and analyzed in this research. Second, to interpret and to explain selected influential topics, the UniDM ontology is constructed from Wikipedia and serves as concept hierarchies of topic models. Our experimental results show that the subjects of data management and queries are identified in the most interrelated topic among other topics, which is followed by that of recommender systems and text mining. Also, the subjects of recommender systems and context-aware systems belong to the most influential topic, and the subject of k-nearest neighbor classifier belongs to the closest topic to other topics. The proposed framework provides a general model for interpreting topics in topic models, which plays an important role in overcoming ambiguous and arbitrary interpretation of topics in topic modeling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.