• Title/Summary/Keyword: K-nearest Neighbor

Search Result 650, Processing Time 0.027 seconds

k-Nearest Neighbor Querv Processing using Approximate Indexing in Road Network Databases (도로 네트워크 데이타베이스에서 근사 색인을 이용한 k-최근접 질의 처리)

  • Lee, Sang-Chul;Kim, Sang-Wook
    • Journal of KIISE:Databases
    • /
    • v.35 no.5
    • /
    • pp.447-458
    • /
    • 2008
  • In this paper, we address an efficient processing scheme for k-nearest neighbor queries to retrieve k static objects in road network databases. Existing methods cannot expect a query processing speed-up by index structures in road network databases, since it is impossible to build an index by the network distance, which cannot meet the triangular inequality requirement, essential for index creation, but only possible in a totally ordered set. Thus, these previous methods suffer from a serious performance degradation in query processing. Another method using pre-computed network distances also suffers from a serious storage overhead to maintain a huge amount of pre-computed network distances. To solve these performance and storage problems at the same time, this paper proposes a novel approach that creates an index for moving objects by approximating their network distances and efficiently processes k-nearest neighbor queries by means of the approximate index. For this approach, we proposed a systematic way of mapping each moving object on a road network into the corresponding absolute position in the m-dimensional space. To meet the triangular inequality this paper proposes a new notion of average network distance, and uses FastMap to map moving objects to their corresponding points in the m-dimensional space. After then, we present an approximate indexing algorithm to build an R*-tree, a multidimensional index, on the m-dimensional points of moving objects. The proposed scheme presents a query processing algorithm capable of efficiently evaluating k-nearest neighbor queries by finding k-nearest points (i.e., k-nearest moving objects) from the m-dimensional index. Finally, a variety of extensive experiments verifies the performance enhancement of the proposed approach by performing especially for the real-life road network databases.

COMPARATIVE ANALYSIS ON MACHINE LEARNING MODELS FOR PREDICTING KOSPI200 INDEX RETURNS

  • Gu, Bonsang;Song, Joonhyuk
    • The Pure and Applied Mathematics
    • /
    • v.24 no.4
    • /
    • pp.211-226
    • /
    • 2017
  • In this paper, machine learning models employed in various fields are discussed and applied to KOSPI200 stock index return forecasting. The results of hyperparameter analysis of the machine learning models are also reported and practical methods for each model are presented. As a result of the analysis, Support Vector Machine and Artificial Neural Network showed a better performance than k-Nearest Neighbor and Random Forest.

Efficient Path Finding Based on the $A^*$ algorithm for Processing k-Nearest Neighbor Queries in Road Network Databases (도로 네트워크에서 $A^*$ 알고리즘을 이용한 k-최근접 이웃 객체에 대한 효과적인 경로 탐색 방법)

  • Shin, Sung-Hyun;Lee, Sang-Chul;Kim, Sang-Wook;Lee, Jung-Hoon;Im, Eul-Kyu
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.405-410
    • /
    • 2009
  • This paper proposes an efficient path finding scheme capable of searching the paths to k static objects from a given query point, aiming at both improving the legacy k-nearest neighbor search and making it easily applicable to the road network environment. To the end of improving the speed of finding one-to-many paths, the modified A* obviates the duplicated part of node scans involved in the multiple executions of a one-to-one path finding algorithm. Additionally, the cost to the each object found in this step makes it possible to finalize the k objects according to the network distance from the candidate set as well as to order them by the path cost. Experiment results show that the proposed scheme has the accuracy of around 100% and improves the search speed by $1.3{\sim}3.0$ times of k-nearest neighbor searches, compared with INE, post-Dijkstra, and $na{\ddot{i}}ve$ method.

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks

  • Cho, Hyung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.63-74
    • /
    • 2021
  • Location-based services (LBSs) are expected to process a large number of spatial queries, such as shortest path and k-nearest neighbor queries that arrive simultaneously at peak periods. Deploying more LBS servers to process these simultaneous spatial queries is a potential solution. However, this significantly increases service operating costs. Recently, batch processing solutions have been proposed to process a set of queries using shareable computation. In this study, we investigate the problem of batch processing moving k-nearest neighbor (MkNN) queries in dynamic spatial networks, where the travel time of each road segment changes frequently based on the traffic conditions. LBS servers based on one-query-at-a-time processing often fail to process simultaneous MkNN queries because of the significant number of redundant computations. We aim to improve the efficiency algorithmically by processing MkNN queries in batches and reusing sharable computations. Extensive evaluation using real-world roadmaps shows the superiority of our solution compared with state-of-the-art methods.

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

k-Nearest Neighbor-Based Approach for the Estimation of Mutual Information (상호정보 추정을 위한 k-최근접이웃 기반방법)

  • Cha, Woon-Ock;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.977-991
    • /
    • 2008
  • This study is about the k-nearest neighbor-based approach for the estimation of mutual information when the type of target variable is categorical and continuous. The results of Monte-Carlo simulation and experiments with real-world data show that k=1 is preferable. In practical application with real world data, our study shows that jittering and bootstrapping is needed.

Improving Weighted k Nearest Neighbor Classification Through The Analytic Hierarchy Process Aiding

  • Park, Cheol-Soo;Ingoo Han
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.187-194
    • /
    • 1999
  • Case-Based Reasoning(CBR) systems support ill structured decision-making. The measure of the success of a CBR system depends on its ability to retrieve the most relevant previous cases in support of the solution of a new case. One of the methodologies widely used in existing CBR systems to retrieve previous cases is that of the Nearest Neighbor(NN) matching function. The NN matching function is based on assumptions of the independence of attributes in previous case and the availability of rules and procedures for matching.(omitted)

  • PDF

Acoustic Emission Source Classification of Finite-width Plate with a Circular Hole Defect using k-Nearest Neighbor Algorithm (k-최근접 이웃 알고리즘을 이용한 원공결함을 갖는 유한 폭 판재의 음향방출 음원분류에 대한 연구)

  • Rhee, Zhang-Kyu;Oh, Jin-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A study of fracture to material is getting interest in nuclear and aerospace industry as a viewpoint of safety. Acoustic emission (AE) is a non-destructive testing and new technology to evaluate safety on structures. In previous research continuously, all tensile tests on the pre-defected coupons were performed using the universal testing machine, which machine crosshead was move at a constant speed of 5mm/min. This study is to evaluate an AE source characterization of SM45C steel by using k-nearest neighbor classifier, k-NNC. For this, we used K-means clustering as an unsupervised learning method for obtained multi -variate AE main data sets, and we applied k-NNC as a supervised learning pattern recognition algorithm for obtained multi-variate AE working data sets. As a result, the criteria of Wilk's $\lambda$, D&B(Rij) & Tou are discussed.

Fast Automatic Modulation Classification by MDC and kNNC (MDC와 kNNC를 이용한 고속 자동변조인식)

  • Park, Cheol-Sun;Yang, Jong-Won;Nah, Sun-Phil;Jang, Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.88-96
    • /
    • 2007
  • This paper discusses the fast modulation classifiers capable of classifying both analog and digital modulation signals in wireless communications applications. A total of 7 statistical signal features are extracted and used to classify 9 modulated signals. In this paper, we investigate the performance of the two types of fast modulation classifiers (i.e. 2 nearest neighbor classifiers and 2 minimum distance classifiers) and compare the performance of these classifiers with that of the state of the art for the existing classification methods such as SVM Classifier. Computer simulations indicate good performance on an AWGN channel, even at low signal-to-noise ratios, in case of minimum distance classifiers (MDC for short) and k nearest neighbor classifiers (kNNC for short). Besides a good performance, these type classifiers are considered as ideal candidate to adapt real-time software radio because of their fast modulation classification capability.

A Smoke Detection Method based on Video for Early Fire-Alarming System (조기 화재 경보 시스템을 위한 비디오 기반 연기 감지 방법)

  • Truong, Tung X.;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.4
    • /
    • pp.213-220
    • /
    • 2011
  • This paper proposes an effective, four-stage smoke detection method based on video that provides emergency response in the event of unexpected hazards in early fire-alarming systems. In the first phase, an approximate median method is used to segment moving regions in the present frame of video. In the second phase, a color segmentation of smoke is performed to select candidate smoke regions from these moving regions. In the third phase, a feature extraction algorithm is used to extract five feature parameters of smoke by analyzing characteristics of the candidate smoke regions such as area randomness and motion of smoke. In the fourth phase, extracted five parameters of smoke are used as an input for a K-nearest neighbor (KNN) algorithm to identify whether the candidate smoke regions are smoke or non-smoke. Experimental results indicate that the proposed four-stage smoke detection method outperforms other algorithms in terms of smoke detection, providing a low false alarm rate and high reliability in open and large spaces.