• 제목/요약/키워드: K-means 알고리즘

검색결과 771건 처리시간 0.033초

퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.

Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding (Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image)

  • 오준택;곽현욱;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 weighted FCM(Fuzzy C-Means) 알고리즘을 적용한 컬러 영상 multi-level thresholding을 제안한다. FCM 알고리즘은 기존의 thresholding 방법들과 달리 최적의 임계치를 결정할 수 있으며 multi-level thresholding으로의 확장이 가능하다. 그러나 공간정보를 포함하고 있지 않기 때문에 잡음 등에 민감하다는 단점을 가진다. 본 논문은 이러한 단점을 해결하기 위해서 이웃 화소들로부터 얻은 entropy 기반의 가중치(weight)를 FCM 알고리즘에 적용함으로써 잡음의 제거가 가능하다. 그리고 각 색상별 성분의 군집 화소들을 기반으로 생성한 코드 영상에 대해서 군집 내부의 거리값을 이용하여 최적의 군집수를 결정한다. 실험에서 제안한 방법이 기존의 방법들보다 잡음에 대해서 강건하며 우수한 분할 성능을 보였다.

CT 전처리 기법을 이용하여 조명변화에 강인한 얼굴인식 시스템 설계 (Design of Robust Face Recognition System with Illumination Variation Realized with the Aid of CT Preprocessing Method)

  • 진용탁;오성권;김현기
    • 한국지능시스템학회논문지
    • /
    • 제25권1호
    • /
    • pp.91-96
    • /
    • 2015
  • 본 연구는 조명변화에 강인한 CT 전처리 기법 기반 개선된 얼굴인식 시스템을 소개한다. 전처리 알고리즘으로 CT알고리즘은 조명이 없는 환경에서도 얼굴의 지역적인 특징만을 추출한다. 얼굴의 지역적인 특징 추출을 가능하게 해준다. 처리된 데이터는 $(2D)^2$ 기반 대표적인 차원축소 알고리즘인 PCA를 사용하여 특징을 추출하였다. 전처리 알고리즘을 통한 특징 데이터는 제안한 방사형 기저함수 신경회로망의 입력으로 사용하였다. 방사형 기저함수 신경회로망의 은닉층은 FCM으로 구성하였고, 연결가중치는 1차 선형식을 사용하였다. 또한 ABC 알고리즘을 이용하여 제안된 분류기의 파라미터, 즉 입력의 수, 퍼지 클러스터링의 퍼지화 계수를 최적화 한다. 본 연구는 제안된 시스템의 성능 평가를 위해 Yale Face database B와 CMU PIE database로 실험하였다.

인공위성 해수면온도 자료를 이용한 동해 연안 냉수대 탐지 알고리즘 개발 (Detection of Cold Water Mass along the East Coast of Korea Using Satellite Sea Surface Temperature Products)

  • 최원준;양찬수
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1235-1243
    • /
    • 2023
  • 한국해양과학기술원에서 생산하여 공개하고 있는 다종 위성 기반의 해수면온도(Sea surface temperature) 자료를 이용하여 동해안 냉수대(Cold water mass) 해역을 탐지하는 알고리즘을 개발하였다. 본 연구에서는 냉수대의 분포를 고려하여 동해안을 3개 해역("고성-울진", "삼척-구룡포", "포항-기장")으로 구분하였다. 각 해역에 K-means clustering 기법을 적용하여 3개 그룹으로 나누고 3개의 그룹은 평균 수온이 높은 순서대로 Group 1, Group 2, Group 3로 칭한다. 수온이 가장 낮은 집합인 Group 3는 냉수대 특성을 나타내는 2가지(각 해역 표준 편차와 Group 1과 Group 3의 평균 수온 차이)의 임계치가 적용되고 탐지 해역내 표준편차가 0.6℃ 이상이고 그룹별 평균 수온 차이가 2℃ 이상일 경우 Group 3을 냉수대로 판단한다. 2022년도 탐지 결과, "포항-기장"은 77일로 가장 많이 탐지되었으며 정량적인 평가를 위해 혼동행렬 성능지표를 계산하였다. 동해안 3곳 해역의 평균 정확도(Accuracy)는 0.83 이상으로 나타났고 F1 score는 "포항-기장"에서 최대 0.95이었다. 본 연구에서 제안한 탐지 알고리즘을 적용하여 보다 구체적인 냉수대 해역의 공간 분포를 매일 이메일 서비스로 제공하고 있다.

K-means 클러스터링을 이용한 불변 방향 검출 (Detection of an Invariant Direction using K-means Clustering)

  • 김달현;이우람;전병민
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 춘계학술논문집 1부
    • /
    • pp.389-392
    • /
    • 2011
  • 본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.

  • PDF

LBG 알고리즘 기반 데이터마이닝을 이용한 네트워크 침입 탐지율 향상 (Improvement of Network Intrusion Detection Rate by Using LBG Algorithm Based Data Mining)

  • 박성철;김준태
    • 지능정보연구
    • /
    • 제15권4호
    • /
    • pp.23-36
    • /
    • 2009
  • 네트워크 침입 탐지는 데이터마이닝 기법을 활용하면서 지속적으로 발전하여 왔다. 데이터마이닝에 의한 침입 탐지 기법에는 클래스 레이블을 이용한 감독 학습과 클래스 레이블이 없는 비감독 학습 방법이 있다. 본 논문에서는 클래스 레이블이 없는 비감독 학습 방법인 LBG 클러스터링 알고리즘을 이용하여 네트워크 침입 탐지 정확도를 높이는 방법을 연구하였다. 임의의 초기 중심값들로 시작하여 유클리디언 거리 기반에 의해 클러스터링을 수행하는 K-means 방법은 잡음(noisy) 데이터와 이상치(outlier)에 대하여 취약하다는 단점이 있다. 비균일이진 분할에 의한 클러스터링 알고리즘은 초기값 없이 이진분할에 의해 클러스터링을 수행하며 수행 속도가 빠르다. 본 논문에서는 이 두 알고리즘의 장단점을 통합한 EM(Expectation Maximization) 기반의 LBG 알고리즘을 네트워크 침입 탐지에 적용하였으며, KDD 컵 데이터셋을 대상으로 한 실험을 통하여 LBG 알고리즘을 이용함으로써 침입 탐지의 정확도를 높일 수 있음을 보였다.

  • PDF

PSO 알고리즘을 이용한 퍼지 Extreme Learning Machine 최적화 (Optimization of Fuzzy Learning Machine by Using Particle Swarm Optimization)

  • 노석범;왕계홍;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.87-92
    • /
    • 2016
  • 본 논문에서는 일반적인 신경회로망의 단점인 느린 학습속도를 획기적으로 개선한 네트워크인 Extreme Learning Machine과 전문가들의 언어적 정보들을 기술 할 수 있는 퍼지 이론을 접목한 퍼지 Extreme Learning Machine을 최적화하기 위하여 Particle Swarm Optimization 알고리즘을 이용하였다. 퍼지 Extreme Learning Machine의 활성화 함수를 일반적인 시그모이드 함수를 사용하지 않고, 퍼지 C-Means 클러스터링 알고리즘의 활성화 레벨 함수를 이용하였다. Particle Swarm Optimization 알고리즘과 같은 최적화 알고리즘을 통하여 퍼지 Extreme Learning Machine의 활성화 함수의 파라미터들을 최적화 한다. Particle Swarm Optimization과 같은 최적화 알고리즘을 통한 제안된 모델의 최적화 하고 최적화된 모델의 분류성능을 평가하기 위하여 다양한 머신 러닝 데이터 집합을 사용하여 평가한다.

화자인식 알고리즘을 이용한 보안 시스템 구축 (An Implementation of Security System Using Speaker Recognition Algorithm)

  • 신유식;박기영;김종교
    • 전자공학회논문지T
    • /
    • 제36T권4호
    • /
    • pp.17-23
    • /
    • 1999
  • 본 연구는 문맥 독립형 화자 인식 알고리즘을 이용하여 보안시스템을 소프트웨어와 하드웨어로 구성한 논문이다. 화자인식을 이용한 보안시스템은 윈도우상에서 사운드카드를 이용하여 음성을 입력받고, 성도 모델링을 이용한 음성 파라미터를 추출하였으며, k-means 클러스터링 알고리즘을 기반으로 하여 화자를 모델링하였다. 등록된 화자에 대한 인식된 결과는 PIC16F84 마이크로 프로세서를 이용하여 자물쇠를 개${\cdot}$폐하도록 구성하였다. OFF-LINE의 실험은 TIMIT데이터를 이용하였으며, 5명의 화자에 대하여 ON-LINE으로 인식한 결과 학습시킨 데이터에 대해서는 100%의 인식률을 얻었으며 학습을 시키지 않은 데이터에 대해서는 99%의 인식률을 얻었다. 그리고 사용자 거부율 1%, 사칭자 허용률 0%, 검증평균오류는 0.5%를 보였다.

  • PDF

개선된 미세분할 방법과 가변적인 가중치를 사용한 벡터 부호책 설계 방법 (The design method for a vector codebook using a variable weight and employing an improved splitting method)

  • 조제황
    • 대한전자공학회논문지SP
    • /
    • 제39권4호
    • /
    • pp.462-469
    • /
    • 2002
  • 벡터 부호책 설계에 사용되는 기존 K-means 알고리즘은 모든 학습반복에서 고정된 가중치를 적용하는데 반해 제안된 방법은 학습반복마다 가변되는 가중치를 적용한다. 초기 학습반복에서는 새로운 부호벡터를 얻기 위해 수렴영역을 벗어나는 2 이상의 가중치를 사용하고, 이 값이 클수록 가변 가중치를 적용하는 학습반복을 줄임으로써 우수한 부호책을 설계할 수 있다. 초기 부호책 설계에 사용되는 미세분할 방법을 개선하기 위하여 소속 학습벡터와 대표벡터간의 오차를 줄이는 방법을 사용한다. 즉 자승오차가 최대인 대표벡터를 제외시키고 최소인 대표벡터를 미세분할함으로써 초기 부호벡터로 대체될 보다 적절한 대표벡터를 얻을 수 있다.

네트워크기반 비정상행위 탐지모델 생성을 위한 비감독 학습 알고리즘 비교분석 (Comparative Analysis of Unsupervised Learning Algorithm for Generating Network based Anomaly Behaviors Detection Model)

  • 이효승;심철준;원일용;이창훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.869-872
    • /
    • 2002
  • 네트워크 기반 침입탐지시스템은 연속적으로 발생하는 패킷의 무손실 축소와, 패킷으로 정상 또는 비정상 행위패턴을 정확히 모델링한 모델 생성이 전체성능을 판단하는 중요한 요소가 된다. 네트워크 기반 비정상행위 판정 침입탐지시스템에서는 이러한 탐지모델 구축을 위해 주로 감독학습 알고리즘을 사용한다. 본 논문은 탐지모델 구축에 사용하는 감독 학습 방식이 가지는 문제점을 지적하고, 그에 대한 대안으로 비감독 학습방식의 학습알고리즘을 제안한다. 감독 학습을 사용하여 탐지모델을 구축하기 위해서는 정상행위의 패킷을 취합해야 하는 사전 부담이 있는 반면에 비감독 학습을 사용하게 되면 이러한 사전작업 없이 탐지모델을 구축할 수 있다. 본 논문에서는 비감독학습 알고리즘을 비교 분석하기 위해서 COBWEB, k-means, Autoclass 알고리즘을 사용했으며, 성능을 평가하기 위해서 비정상행위도(Abnormal Behavior Level)를 계산하여 에러율을 구하였다.

  • PDF