Kim, Dong-Kyun;Joo, Gea-Jae;Jeong, Kwang-Seuk;Chang, Kwang-Hyson;Kim, Hyun-Woo
Korean Journal of Ecology and Environment
/
v.39
no.1
s.115
/
pp.52-61
/
2006
The aim of this study was to analyze the seasonal patterns of zooplankton community dynamics in the lower Nakdong River (Mulgum, RK; river kilometer; 27 km from the estuarine barrage), with a Self-Organizing Map (SOM) based on weekly sampled data collected over ten years(1994 ${\sim}$ 2003). It is well known that zooplankton groups had important role in the food web of freshwater ecosystems, however, less attention has been paid to this group compared with other community constituents. A non-linear patterning algorithm of the SOM was applied to discover the relationship among river environments and zooplankton community dynamics. Limnological variables (water temperature, dissolved oxygen, pH , Secchi transparency, turbidity, chlorophyll a, discharge, etc.) were taken into account to implement patterning seasonal changes of zooplankton community structures (consisting of rotifers, cladocerans and copepods). The trained SOM model allocated zooplankton on the map plane with limnological parameters. Three zooplankton groups had high similarities to one another in their changing seasonal patterns, Among the limnological variables, water temporature was highly related to the zooplankton community dynamics (especially for cladocerans). The SOM model illustrated the suppression of zooplankton due to the increased river discharge, particularly in summer. Chlorophyll a concentrations were separated from zooplankton data set on the map plane, which would intimate the herbivorous activity of dominant grazers. This study introduces the zooplankton dynamics associated with limnological parameters using a nonlinear method, and the information will be useful for managing the river ecosystem, with respect to the food web interactions.
In this paper, we propose an online VQ Codebook generation method for updating an existing VQ Codebook in real-time and adding to an existing cluster with newly created text data which are news paper, web pages, blogs, tweets and IoT data like sensor, machine. Without degrading the performance of the batch VQ Codebook to the existing data, it was able to take advantage of the newly added data by using a triangle inequality which modifying the VQ Codebook progressively show a high degree of accuracy and speed. The result of applying to test data showed that the performance is similar to the batch method.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.31
no.4
/
pp.255-260
/
2018
In recent years, increasing electricity use has led to considerable interest in green energy. In order to effectively supply, cut off, and operate an electric power system, many electric power facilities such as gas insulation switch (GIS), cable, and large substation facilities with higher densities are being developed to meet demand. However, because of the increased use of aging electric power facilities, safety problems are emerging. Electromagnetic wave and leakage current detection are mainly used as sensing methods to detect live-line partial discharges. Although electromagnetic sensors are excellent at providing an initial diagnosis and very reliable, it is difficult to precisely determine the fault point, while leakage current sensors require a connection to the ground line and are very vulnerable to line noise. The partial discharge characteristic in particular is accompanied by statistical irregularity, and it has been reported that proper statistical processing of data is very important. Therefore, in this paper, we present the results of analyzing ${\Phi}-q-n$ cluster distributions of partial discharge characteristics by using K-means clustering to develop an expert partial discharge diagnosis system generated in a GIS facility.
Journal of the Korean Regional Science Association
/
v.33
no.3
/
pp.79-100
/
2017
This study provides the insight into the aged employment provision issue for the aged-low growth era. For the purpose, we analyze the national trend of the age demographic and occupational employment in first. And then we investigate the spatial characteristics of employment of the aged in the Seoul Metropolitan area which has the highest elderly population by utilizing location quotient, factor analysis, and K-means cluster analysis. As the result, we found that the spatial distribution patterns of the residence and workplace of the elderly were nearly coincided with each other. Furthermore, five clusters of the aged distribution have been determined according to the industrial-occupational-demographic attributes. The result revealed clear spatial segrmentation: Most of elderly population of the research area have been engaged in the low-level service jobs, while elderly population employed to the educated-knowledged based high-level jobs has been distributed at a few cores. The results could be applied to the practical use for regional employment planning for the aged.
This paper proposes a new RBF neural network that determines the number and the center of hidden neurons based on the adaptive feature extraction for the input data. The principal component analysis is applied for extracting adaptively the features by reducing the dimension of the given input data. It can simultaneously achieve a superior property of both the principal component analysis by mapping input data into set of statistically independent features and the RBF neural networks. The proposed neural networks has been applied to classify the 200 breast cancer databases by 2-class. The simulation results shows that the proposed neural networks has better performances of the learning time and the classification for test data, in comparison with those using the k-means clustering algorithm. And it is affected less than the k-means clustering algorithm by the initial weight setting and the scope of the smoothing factor.
Journal of the Korean Data and Information Science Society
/
v.26
no.2
/
pp.367-376
/
2015
Today, big data has become a hot keyword in that big data may be defined as collection of data sets so huge and complex that it becomes difficult to process by traditional methods. Clustering method is to identify the information in a big database by assigning a set of objects into the clusters so that the objects in the same cluster are more similar to each other clusters. The similarity measures being used in the cluster analysis may be classified into various types depending on the nature of the data. In this paper, we computed upper and lower limits for probability interestingness measure based similarity measures without marginal probability such as Yule I and II, Michael, Digby, Baulieu, and Dispersion measure. And we compared these measures by real data and simulated experiment. By Warrens (2008), Coefficients with the same quantities in the numerator and denominator, that are bounded, and are close to each other in the ordering, are likely to be more similar. Thus, results on bounds provide means of classifying various measures. Also, knowing which coefficients are similar provides insight into the stability of a given algorithm.
We provide R scripts to detect outliers in multivariate data and visualization. Detecting outliers is provided using three approaches 1) Robust Mahalanobis distance, 2) High Dimensional data, 3) density-based approach methods. We use the following techniques to visualize detected potential outliers 1) multidimensional scaling (MDS) and minimal spanning tree (MST) with k-means clustering, 2) MDS with fviz cluster, 3) principal component analysis (PCA) with fviz cluster. For real data sets, we use MLB pitching data including Ryu, Hyun-jin in 2013 and 2014. The developed R scripts can be downloaded at "http://www.knou.ac.kr/~sskim/ddpoutlier.html" (R scripts and also R package can be downloaded here).
Seo Eun-Kyoung;Choi Gab-Keun;Kim Soon-Hyob;Lee Soo-Jeong
Journal of Korea Multimedia Society
/
v.9
no.1
/
pp.23-32
/
2006
This paper describes the optimization of a language model and an acoustic model to improve speech recognition using Korean unit digits. Since the model is composed of a finite state network (FSN) with a disyllable, recognition errors of the language model were reduced by analyzing the grammatical features of Korean unit digits. Acoustic models utilize a demisyllable pair to decrease recognition errors caused by inaccurate division of a phone or monosyllable due to short pronunciation time and articulation. We have used the K-means clustering algorithm with the transformed successive state splitting in the feature level for the efficient modelling of feature of the recognition unit. As a result of experiments, 10.5% recognition rate is raised in the case of the proposed language model. The demi-syllable fair with an acoustic model increased 12.5% recognition rate and 1.5% recognition rate is improved in transformed successive state splitting.
This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.6
/
pp.792-798
/
2021
In this paper, an algorithm for determining the coagulant input rate in the drug-injection tank during the process of the water purification plant was derived through big data analysis and prediction based on artificial intelligence. In addition, analysis of big data technology and AI algorithm application methods and existing academic and technical data were reviewed to analyze and review application cases in similar fields. Through this, the goal was to develop an algorithm for determining the coagulant input rate and to present the optimal input rate through autonomous driving simulator and pilot operation of the coagulant input process. Through this study, the coagulant injection rate, which is an output variable, is determined based on various input variables, and it is developed to simulate the relationship pattern between the input variable and the output variable and apply the learned pattern to the decision-making pattern of water plant operating workers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.