• 제목/요약/키워드: K-joints

검색결과 2,897건 처리시간 0.026초

Investigation on SCFs of concrete-filled circular chord and square braces K-joints under balanced axial loading

  • Chen, Yu;Hu, Kang;Yang, Jian
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1227-1250
    • /
    • 2016
  • Most of the research work has been conducted on K-joints under static loading. Very limited information is available in consideration of fatigue strength of K-joints with concrete-filled chord. This paper aims to describe experimental and numerical investigations on stress concentration factors (SCFs) of concrete-filled circular chord and square braces K-joints under balanced axial loading. Experiment was conducted to study the hot spot stress distribution along the intersection of chord and braces in the two specimens with compacting concrete filled in the chord. The test results of stress distribution curves of two specimens were reported. SCFs of concrete-filled circular chord and square braces K-joints were lower than those of corresponding hollow circular chord and square brace K-joints. The corresponding finite element analysis was also conducted to simulate stress distribution along the brace and chord intersection region of joints. It was achieved that experimental and finite element analysis results had good agreement. Therefore, an extensive parametric study was carried out by using the calibrated finite element model to evaluate the effects of main geometric parameters and concrete strength on the behavior of concrete-filled circular chord and square braces K-joints under balanced axial loading. The SCFs at the hot spot locations obtained from ABAQUS were compared with those calculated by using design formula given in the CIDECT for hollow SHS-SHS K-joints. CIDECT Design Guide was generally quite conservative for predicting SCFs of braces and was dangerous for predicting SCFs of chord in concrete-filled circular chord and square braces K-joints. Finally SCF formulae were proposed for circular chord and square braces K-joints with concrete-filled in the chord under balanced axial loading. It is shown that the SCFs calculated from the proposed design equation are generally in agreement with the values derived from finite element analysis, which were proved to be reliable and accurate.

Experiment and bearing capacity analyses of dual-lintel column joints in Chinese traditional style buildings

  • Xue, Jianyang;Ma, Linlin;Wu, Zhanjing;Zhai, Lei;Zhang, Xin
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.641-653
    • /
    • 2018
  • This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.

Research on rotation capacity of the new precast concrete assemble beam-column joints

  • Han, Chun;Li, Qingning;Wang, Xin;Jiang, Weishan;Li, Wei
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.613-625
    • /
    • 2016
  • The joints of the new prefabricated concrete assemble beam-column joints are put together by the hybrid joints of inserting steel under post-tensioned and non-prestressed force and both beams and columns adopt prefabricated components. The low cyclic loading test has been performed on seven test specimens of beam-column joints. Based on the experimental result, the rotation capacity of the joints is studied and the $M-{\theta}$ relation curve is obtained. According to Eurocode 3: Design of steel structures and based on the initial rotational stiffness, the joints are divided into three types; by equivalent bending-resistant stiffness to the precast beam, the equivalent modulus of elasticity $E_e$ is elicited with the superposition method; the beam length is figured out that satisfies the rigid joints and after meeting the requirements of application and safety, the new prefabricated concrete assemble beam-column joints can be regarded as the rigid joints; the design formula adopted by the standard of concrete joint classification is theoretically derived, thereby providing a theoretical basis for the new prefabricated concrete structure.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

Shear Strength of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2002
  • This is the first of two part series on experimental studies of grout type transverse joints. In this study, grout type transverse joints between precast concrete slabs are statically tested to determine the cracking loads and ultimate shear capacities of the grout type transverse joints. The tests are performed with a loading equipment designed and constructed especially in the lab to induce shear failures on the joints of the test specimens. Shape of the transverse joints, grouting materials and amount of prestress are selected as test parameters for the study. The results indicate that epoxy is an excellent grouting material which can be used in limited locations where large tensile stress is acting on the slab. Longitudinal prestressing is also an effective method to increase the shear strength of the transverse joints. A rational method to estimate the cracking and ultimate loads for the design of grout type transverse joints is proposed based on the static loading tests. Success of the tests with shear loading equipment allowed continuing the research further onto the fatigue strength of the grout type joints, which will be presented in the second part of the paper.

  • PDF

Numerical Assessment of Reinforcing Details in Beam-Column Joints on Blast Resistance

  • Lim, Kwang-Mo;Shin, Hyun-Oh;Kim, Dong-Joo;Yoon, Young-Soo;Lee, Joo-Ha
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.87-96
    • /
    • 2016
  • This numerical study investigated the effects of different reinforcing details in beam-column joints on the blast resistance of the joints. Due to increasing manmade and/or natural high rate accidents such as impacts and blasts, the resistance of critical civil and military infrastructure or buildings should be sufficiently obtained under those high rate catastrophic loads. The beam-column joint in buildings is one of critical parts influencing on the resistance of those buildings under extreme events such as earthquakes, impacts and blasts. Thus, the details of reinforcements in the joints should be well designed for enhancing the resistance of the joints under the events. Parameters numerically investigated in this study include diagonal, flexural, and shear reinforcing steel bars. The failure mechanism of the joints could be controlled by the level of tensile stress of reinforcing steel bars. Among various reinforcing details in the joints, diagonal reinforcement in the joints was found to be most effective for enhancing the resistance under blast loads. In addition, shear reinforcements also produced favourable effects on the blast resistance of beam-column joints.

Cyclic tests on bolted steel and composite double-sided beam-to-column joints

  • Dubina, Dan;Ciutina, Adrian Liviu;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • 제2권2호
    • /
    • pp.147-160
    • /
    • 2002
  • This paper summarises results of the research performed at the Department of Steel Structures and Structural Mechanics from the "Politehnica" University of Timisoara, Romania, in order to evaluate the performance of beam-to-column extended end plate connections for steel and composite joints. It comprises laboratory tests on steel and composite joints, and numerical modelling of joints, based on tests. Tested joints are double-sided, with structural elements realised of welded steel sections. The columns are of cruciform cross-section, while the beams are of I section. Both monotonic and cyclic loading, symmetrically and antisymmetrically, has been applied. On the basis of tested joints, a refined computer model has been calibrated using a special connection element of the computer code DRAIN 2DX. In this way, a static/dynamic structural analysis of framed structures with real characteristics of the beam to column joints is possible.

악관절원판 천공의 임상적, 방사선적 및 외과적 비교연구 (EVALUATION OF MENISCUS PERFORATION IN THE TMJ;CLINICAL, ARTHROGRAPHIC AND SURGICAL FINDINGS)

  • 김형곤;박광호;김준배;주재동
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제12권1호
    • /
    • pp.202-209
    • /
    • 1990
  • A retrospective study of 498 patients (591 joints) who had diagnosed as having internal derangement of the temporomandibular joint by history, clinical examination, and arthrography were evaluated. 66 patients (70 joints) were diagnosed as having meniscus perforation between the joint compartments. In those patients with pain (11 joints : 15.7%), pain and crepitation (24 joints : 34.3%), pain, crepitation and LOM (31 joints : 44.3%), and painless crepitation with LOM (4 joints : 5.7%) complained clinically. All these patients who had perforation showed irregularity in outline of the contrast material, bone contour-contrast material gaps, flattening of cortical layer of articular eminence. On the 20 joints treated surgically, 17 joints were found to have meniscus perforation at the time of surgery which correlated with their pre-operative radiographic and clinical diagnosis. Three joints could not found perforation of meniscus. This study was designed to examine of the incidences of the meniscus perforation in the above patients and to assess the diagnostic accuracy of arthrography by comparing the results with the finding of direct examination at TMJ surgery.

  • PDF

Analytical investigation on moment-rotation relationship of through-tenon joints with looseness in ancient timber buildings

  • Xue, Jianyang;Qi, Liangjie;Dong, Jinshuang;Xu, Dan
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.241-248
    • /
    • 2018
  • To study the mechanical properties of joints in ancient timber buildings in depth, the force mechanism of the through-tenon joints was analyzed, also the theoretical formulas of the moment-rotation angles of the joints with different loosening degrees were deduced. To validate the rationality of the theoretical calculation formulas, six joint models with 1/3.2 scale ratio, including one intact joint and five loosening joints, were fabricated and tested under cyclic loading. The specimens underwent the elastic stage, the plastic stage and the destructive stage, respectively. At the same time, the moment-rotation backbone curves of the tenon joints with different looseness were obtained, and the theoretical calculation results were validated when compared with the experimental results. The results show that the rotational moment and the initial rotational stiffness of the tenon joints increase gradually with the increase of the friction coefficient. The increase of the tenon section height can effectively improve the bearing capacity of the through-tenon joints. As the friction coefficient of the wood and the insertion length of the tension increase, the embedment length goes up, whereas it decreases with the increase of section height. With the increase of the looseness, the bearing capacity of the joint is reduced gradually.

원심성형 고성능 RC 말뚝의 이음부 보강에 대한 해석적 연구 (A Numerical Study on Flexure Performance of Enhanced Spun RC Pile with Reinforced Joint)

  • 주상훈;황훈희;배재현;이지훈
    • 한국안전학회지
    • /
    • 제33권5호
    • /
    • pp.70-77
    • /
    • 2018
  • In this study, the reinforced methods of joints were proposed to improve the structural performance of the enhanced spun reinforced concrete piles with joints. To verify the proposed methods, flexure performance was validated by finite element analysis considering both material and contact nonlinearity. Based on the previous study and those results of the analysis, it is concluded that the structural performance of the current joints system for the enhanced spun RC piles can be enhanced by applying the reinforced joints composed of extended circular band plates and studs. This proposed method showed the nearest structural behavior to the enhanced spun RC piles without joints. This numerical study will be used to further experimental study on the enhanced spun RC piles with reinforced joints.