• Title/Summary/Keyword: K-NN

Search Result 793, Processing Time 0.027 seconds

Analysis of Morton Code Conversion for 32 Bit IEEE 754 Floating Point Variables (IEEE 754 부동 소수점 32비트 float 변수의 Morton Code 변환 분석)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • Morton codes play important roles in many parallel GPU applications for the nearest neighbor (NN) search in huge data and queries with its applications growing. This paper discusses and analyzes the meaning of Tero Karras's 32-bit 'unsigned int' Morton code algorithm for three-dimensional spatial information in $[0,1]^3$ and its geometric implications. Based on this, this paper proposes 64-bit 'unsigned long long' version of Morton code and compares the results in both CPU vs. GPU and 32-bit vs. 64-bit versions. The proposed GPU algorithm runs around 1000 times faster than the CPU version.

Predictive Models for Sasang Constitution Types Using Genetic Factors (유전지표를 활용한 사상체질 분류모델)

  • Ban, Hyo-Jeong;Lee, Siwoo;Jin, Hee-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.32 no.2
    • /
    • pp.10-21
    • /
    • 2020
  • Objectives Genome-wide association studies(GWAS) is a useful method to identify genetic associations for various phenotypes. The purpose of this study was to develop predictive models for Sasang constitution types using genetic factors. Methods The genotypes of the 1,999 subjects was performed using Axiom Precision Medicine Research Array (PMRA) by Life Technologies. All participants were prescribed Sasang Constitution-specific herbal remedies for the treatment, and showed improvement of original symptoms as confirmed by Korean medicine doctor. The genotypes were imputed by using the IMPUTE program. Association analysis was conducted using a logistic regression model to discover Single Nucleotide Polymorphism (SNP), adjusting for age, sex, and BMI. Results & Conclusions We developed models to predict Korean medicine constitution types using identified genectic factors and sex, age, BMI using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). Each maximum Area Under the Curve (AUC) of Teaeum, Soeum, Soyang is 0.894, 0.868, 0.767, respectively. Each AUC of the models increased by 6~17% more than that of models except for genetic factors. By developing the predictive models, we confirmed usefulness of genetic factors related with types. It demonstrates a mechanism for more accurate prediction through genetic factors related with type.

Pruning and Matching Scheme for Rotation Invariant Leaf Image Retrieval

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.280-298
    • /
    • 2008
  • For efficient content-based image retrieval, diverse visual features such as color, texture, and shape have been widely used. In the case of leaf images, further improvement can be achieved based on the following observations. Most plants have unique shape of leaves that consist of one or more blades. Hence, blade-based matching can be more efficient than whole shape-based matching since the number and shape of blades are very effective to filtering out dissimilar leaves. Guaranteeing rotational invariance is critical for matching accuracy. In this paper, we propose a new shape representation, indexing and matching scheme for leaf image retrieval. For leaf shape representation, we generated a distance curve that is a sequence of distances between the leaf’s center and all the contour points. For matching, we developed a blade-based matching algorithm called rotation invariant - partial dynamic time warping (RI-PDTW). To speed up the matching, we suggest two additional techniques: i) priority queue-based pruning of unnecessary blade sequences for rotational invariance, and ii) lower bound-based pruning of unnecessary partial dynamic time warping (PDTW) calculations. We implemented a prototype system on the GEMINI framework [1][2]. Using experimental results, we showed that our scheme achieves excellent performance compared to competitive schemes.

Default Prediction for Real Estate Companies with Imbalanced Dataset

  • Dong, Yuan-Xiang;Xiao, Zhi;Xiao, Xue
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.314-333
    • /
    • 2014
  • When analyzing default predictions in real estate companies, the number of non-defaulted cases always greatly exceeds the defaulted ones, which creates the two-class imbalance problem. This lowers the ability of prediction models to distinguish the default sample. In order to avoid this sample selection bias and to improve the prediction model, this paper applies a minority sample generation approach to create new minority samples. The logistic regression, support vector machine (SVM) classification, and neural network (NN) classification use an imbalanced dataset. They were used as benchmarks with a single prediction model that used a balanced dataset corrected by the minority samples generation approach. Instead of using prediction-oriented tests and the overall accuracy, the true positive rate (TPR), the true negative rate (TNR), G-mean, and F-score are used to measure the performance of default prediction models for imbalanced dataset. In this paper, we describe an empirical experiment that used a sampling of 14 default and 315 non-default listed real estate companies in China and report that most results using single prediction models with a balanced dataset generated better results than an imbalanced dataset.

Improving Web Service Recommendation using Clustering with K-NN and SVD Algorithms

  • Weerasinghe, Amith M.;Rupasingha, Rupasingha A.H.M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1708-1727
    • /
    • 2021
  • In the advent of the twenty-first century, human beings began to closely interact with technology. Today, technology is developing, and as a result, the world wide web (www) has a very important place on the Internet and the significant task is fulfilled by Web services. A lot of Web services are available on the Internet and, therefore, it is difficult to find matching Web services among the available Web services. The recommendation systems can help in fixing this problem. In this paper, our observation was based on the recommended method such as the collaborative filtering (CF) technique which faces some failure from the data sparsity and the cold-start problems. To overcome these problems, we first applied an ontology-based clustering and then the k-nearest neighbor (KNN) algorithm for each separate cluster group that effectively increased the data density using the past user interests. Then, user ratings were predicted based on the model-based approach, such as singular value decomposition (SVD) and the predictions used for the recommendation. The evaluation results showed that our proposed approach has a less prediction error rate with high accuracy after analyzing the existing recommendation methods.

Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling (신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가)

  • Jo, Seok-Je;Jeong, Hyeon-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

Korean Sentence Boundary Detection Using Memory-based Machine Learning (메모리 기반의 기계 학습을 이용한 한국어 문장 경계 인식)

  • Han Kun-Heui;Lim Heui-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.133-139
    • /
    • 2004
  • This paper proposes a Korean sentence boundary detection system which employs k-nearest neighbor algorithm. We proposed three scoring functions to classify sentence boundary and performed comparative analysis. We uses domain independent linguistic features in order to make a general and robust system. The proposed system was trained and evaluated on the two kinds of corpus; ETRI corpus and KAIST corpus. As experimental results, the proposed system shows about $98.82\%$ precision and $99.09\%$ recall rate even though it was trained on relatively small corpus.

  • PDF

Shear Capacity of Reinforced Concrete Beams Using Neural Network

  • Yang, Keun-Hyeok;Ashour, Ashraf F.;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.63-73
    • /
    • 2007
  • Optimum multi-layered feed-forward neural network (NN) models using a resilient back-propagation algorithm and early stopping technique are built to predict the shear capacity of reinforced concrete deep and slender beams. The input layer neurons represent geometrical and material properties of reinforced concrete beams and the output layer produces the beam shear capacity. Training, validation and testing of the developed neural network have been achieved using 50%, 25%, and 25%, respectively, of a comprehensive database compiled from 631 deep and 549 slender beam specimens. The predictions obtained from the developed neural network models are in much better agreement with test results than those determined from shear provisions of different codes, such as KBCS, ACI 318-05, and EC2. The mean and standard deviation of the ratio between predicted using the neural network models and measured shear capacities are 1.02 and 0.18, respectively, for deep beams, and 1.04 and 0.17, respectively, for slender beams. In addition, the influence of different parameters on the shear capacity of reinforced concrete beams predicted by the developed neural network shows consistent agreement with those experimentally observed.

Low Power Neuromorphic Hardware Design and Implementation Based on Asynchronous Design Methodology (비동기 설계 방식기반의 저전력 뉴로모픽 하드웨어의 설계 및 구현)

  • Lee, Jin Kyung;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This paper proposes an asynchronous circuit design methodology using a new Single Gate Sleep Convention Logic (SG-SCL) with advantages such as low area overhead, low power consumption compared with the conventional null convention logic (NCL) methodologies. The delay-insensitive NCL asynchronous circuits consist of dual-rail structures using {DATA0, DATA1, NULL} encoding which carry a significant area overhead by comparison with single-rail structures. The area overhead can lead to high power consumption. In this paper, the proposed single gate SCL deploys a power gating structure for a new {DATA, SLEEP} encoding to achieve low area overhead and low power consumption maintaining high performance during DATA cycle. In this paper, the proposed methodology has been evaluated by a liquid state machine (LSM) for pattern and digit recognition using FPGA and a 0.18 ㎛ CMOS technology with a supply voltage of 1.8 V. the LSM is a neural network (NN) algorithm similar to a spiking neural network (SNN). The experimental results show that the proposed SG-SCL LSM reduced power consumption by 10% compared to the conventional LSM.

Change of Heart Rate Variability on Menstruation in Women at College (여대생 월경(月經)의 심박변이도 변화에 대한 연구)

  • Kim, Gyeong Cheol;Kim, Yi Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.5
    • /
    • pp.745-752
    • /
    • 2012
  • This study aims to show the change of Heart Rate Variability(HRV) and Pulse wave velocity(PWV) on menstruation in women at college. Heart Rate Variability(HRV) and Pulse wave velocity(PWV) of 122 women at college were measured at their menstruation and ordinary period. SDNN, RMSSD, SDSD, HRV Index(%), stress resistance and cardiac activity were significantly higher at their menstruation than ordinary period, but Total Power and pNN50(%) were opposite. The automatic nervous system balance and physical stress were decreased in groups without dysmenorrhea than with one. PWV(E-R) and PWV(E-L) were much higher at menstruation than ordinary period. PTT(F-R) and PTT(F-L) were decreased in groups without dysmenorrhea than with severe one. We demonstrated that menstruation can effect on Heart Rate Variability and Pulse wave velocity and dysmenorrhea can cause the imbalance of autonomic nervous system.