• Title/Summary/Keyword: K-Means Clustering

Search Result 1,117, Processing Time 0.028 seconds

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.

A New Approach for Hierarchical Dividing to Passenger Nodes in Passenger Dedicated Line

  • Zhao, Chanchan;Liu, Feng;Hai, Xiaowei
    • Journal of Information Processing Systems
    • /
    • v.14 no.3
    • /
    • pp.694-708
    • /
    • 2018
  • China possesses a passenger dedicated line system of large scale, passenger flow intensity with uneven distribution, and passenger nodes with complicated relations. Consequently, the significance of passenger nodes shall be considered and the dissimilarity of passenger nodes shall be analyzed in compiling passenger train operation and conducting transportation allocation. For this purpose, the passenger nodes need to be hierarchically divided. Targeting at problems such as hierarchical dividing process vulnerable to subjective factors and local optimum in the current research, we propose a clustering approach based on self-organizing map (SOM) and k-means, and then, harnessing the new approach, hierarchical dividing of passenger dedicated line passenger nodes is effectuated. Specifically, objective passenger nodes parameters are selected and SOM is used to give a preliminary passenger nodes clustering firstly; secondly, Davies-Bouldin index is used to determine the number of clusters of the passenger nodes; and thirdly, k-means is used to conduct accurate clustering, thus getting the hierarchical dividing of passenger nodes. Through example analysis, the feasibility and rationality of the algorithm was proved.

An Extension of Possibilistic Fuzzy C-means using Regularization (Regularization을 이용한 Possibilistic Fuzzy C-means의 확장)

  • Heo, Gyeong-Yong;NamKoong, Young-Hwan;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means (FCM) and possibilistic c-means (PCM) are the two most well-known clustering algorithms in fuzzy clustering area, and have been applied in many applications in their original or modified forms. However, FCM's noise sensitivity problem and PCM's overlapping cluster problem are also well known. Recently there have been several attempts to combine both of them to mitigate the problems and possibilistic fuzzy c-means (PFCM) showed promising results. In this paper, we proposed a modified PFCM using regularization to reduce noise sensitivity in PFCM further. Regularization is a well-known technique to make a solution space smooth and an algorithm noise insensitive. The proposed algorithm, PFCM with regularization (PFCM-R), can take advantage of regularization and further reduce the effect of noise. Experimental results are given and show that the proposed method is better than the existing methods in noisy conditions.

Clustering non-stationary advanced metering infrastructure data

  • Kang, Donghyun;Lim, Yaeji
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.225-238
    • /
    • 2022
  • In this paper, we propose a clustering method for advanced metering infrastructure (AMI) data in Korea. As AMI data presents non-stationarity, we consider time-dependent frequency domain principal components analysis, which is a proper method for locally stationary time series data. We develop a new clustering method based on time-varying eigenvectors, and our method provides a meaningful result that is different from the clustering results obtained by employing conventional methods, such as K-means and K-centres functional clustering. Simulation study demonstrates the superiority of the proposed approach. We further apply the clustering results to the evaluation of the electricity price system in South Korea, and validate the reform of the progressive electricity tariff system.

An efficient heuristics for determining the optimal number of cluster using clustering balance (클러스터링 균형을 사용하여 최적의 클러스터 개수를 결정하기 위한 효율적인 휴리스틱)

  • Lee, Sangwook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.792-796
    • /
    • 2009
  • Determining the optimal number of cluster is an important issue in research area of data clustering. It is choosing the cluster validity method and finding the cluster number where it optimizes the cluster validity. In this paper, an efficient heuristic for determining optimal number of cluster using clustering balance is proposed. The experimental results using k-means at artificial and real-life data set show that proposed algorithm is excellent in aspect of time efficiency.

  • PDF

Expansion Clustering For Initialized Set (초기 클러스터를 위한 확장 클러스터링)

  • Lee, Jae-Seong;Kim, Dae-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.79-82
    • /
    • 2006
  • 본 논문에서는 사용자가 결과를 얻고자 하는 목적 집단의 초기 클러스터를 생성하는 알고리즘을 제안한다. 알고리즘이 생성하는 클러스터는 사용자의 입력을 받지 않고 생성되며, 목적 집단에 포함되는 임의의 두 점을 이용한 확장을 통해 초기 클러스터를 생성한다. 이에 따라 서로의 영역을 침범하지 않는 일반적인 클러스터를 생성하는 것이 가능하다.

  • PDF

Analysis of Bus Accident Severity Using K-Means Clustering Model and Ordered Logit Model (K-평균 군집모형 및 순서형 로짓모형을 이용한 버스 사고 심각도 유형 분석 측면부 사고를 중심으로)

  • Lee, Insik;Lee, Hyunmi;Jang, Jeong Ah;Yi, Yongju
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.69-77
    • /
    • 2021
  • Although accident data from the National Police Agency and insurance companies do not know the vehicle safety, the damage level information can be obtained from the data managed by the bus credit association or the bus company itself. So the accident severity was analyzed based on the side impact accidents using accident repair cost. K-means clustering analysis separated the cost of accident repair into 'minor', 'moderate', 'severe', and 'very severe'. In addition, the side impact accident severity was analyzed by using an ordered logit model. As a result, it is appeared that the longer the repair period, the greater the impact on the severity of the side impact accident. Also, it is appeared that the higher the number of collision points, the greater the impact on the severity of the side impact accident. In addition, oblique collisions of the angle of impact were derived to affect the severity of the accident less than right angle collisions. Finally, the absence of opponent vehicle and large commercial vehicles involved accidents were shown to have less impact on the side impact accident severity than passenger cars.

Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery (대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • The present study introduces a method to parallelize k-means clustering algorithm for fast unsupervised classification of large satellite imagery. Known as a representative algorithm for unsupervised classification, k-means clustering is usually applied to a preprocessing step before supervised classification, but can show the evident advantages of parallel processing due to its high computational intensity and less human intervention. Parallel processing codes are developed by using multi-threading based on OpenMP. In experiments, a PC of 8 multi-core integrated CPU is involved. A 7 band and 30m resolution image from LANDSAT 8 OLI and a 8 band and 10m resolution image from Sentinel-2A are tested. Parallel processing has shown 6 time faster speed than sequential processing when using 10 classes. To check the consistency of parallel and sequential processing, centers, numbers of classified pixels of classes, classified images are mutually compared, resulting in the same results. The present study is meaningful because it has proved that performance of large satellite processing can be significantly improved by using parallel processing. And it is also revealed that it easy to implement parallel processing by using multi-threading based on OpenMP but it should be carefully designed to control the occurrence of false sharing.

Problems in Fuzzy c-means and Its Possible Solutions (Fuzzy c-means의 문제점 및 해결 방안)

  • Heo, Gyeong-Yong;Seo, Jin-Seok;Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • Clustering is one of the well-known unsupervised learning methods, in which a data set is grouped into some number of homogeneous clusters. There are numerous clustering algorithms available and they have been used in various applications. Fuzzy c-means (FCM), the most well-known partitional clustering algorithm, was established in 1970's and still in use. However, there are some unsolved problems in FCM and variants of FCM are still under development. In this paper, the problems in FCM are first explained and the available solutions are investigated, which is aimed to give researchers some possible ways of future research. Most of the FCM variants try to solve the problems using domain knowledge specific to a given problem. However, in this paper, we try to give general solutions without using any domain knowledge. Although there are more things left than discovered, this paper may be a good starting point for researchers newly entered into a clustering area.

Face Recognition Based on PCA and LDA Combining Clustering (Clustering을 결합한 PCA와 LDA 기반 얼굴 인식)

  • Guo, Lian-Hua;Kim, Pyo-Jae;Chang, Hyung-Jin;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.387-388
    • /
    • 2006
  • In this paper, we propose an efficient algorithm based on PCA and LDA combining K-means clustering method, which has better accuracy of face recognition than Eigenface and Fisherface. In this algorithm, PCA is firstly used to reduce the dimensionality of original face image. Secondly, a truncated face image data are sub-clustered by K-means clustering method based on Euclidean distances, and all small subclusters are labeled in sequence. Then LDA method project data into low dimension feature space and group data easier to classify. Finally we use nearest neighborhood method to determine the label of test data. To show the recognition accuracy of the proposed algorithm, we performed several simulations using the Yale and ORL (Olivetti Research Laboratory) database. Simulation results show that proposed method achieves better performance in recognition accuracy.

  • PDF