• Title/Summary/Keyword: K-Means Clustering

Search Result 1,117, Processing Time 0.026 seconds

The Optimization of Fuzzy Prototype Classifier by using Differential Evolutionary Algorithm (차분 진화 알고리즘을 이용한 Fuzzy Prototype Classifier 최적화)

  • Ahn, Tae-Chon;Roh, Seok-Beom;Kim, Yong Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2014
  • In this paper, we proposed the fuzzy prototype pattern classifier. In the proposed classifier, each prototype is defined to describe the related sub-space and the weight value is assigned to the prototype. The weight value assigned to the prototype leads to the change of the boundary surface. In order to define the prototypes, we use Fuzzy C-Means Clustering which is the one of fuzzy clustering methods. In order to optimize the weight values assigned to the prototypes, we use the Differential Evolutionary Algorithm. We use Linear Discriminant Analysis to estimate the coefficients of the polynomial which is the structure of the consequent part of a fuzzy rule. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

Application of Clustering Methods for Interpretation of Petroleum Spectra from Negative-Mode ESI FT-ICR MS

  • Yeo, In-Joon;Lee, Jae-Won;Kim, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3151-3155
    • /
    • 2010
  • This study was performed to develop analytical methods to better understand the properties and reactivity of petroleum, which is a highly complex organic mixture, using high-resolution mass spectrometry and statistical analysis. Ten crude oil samples were analyzed using negative-mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Clustering methods, including principle component analysis (PCA), hierarchical clustering analysis (HCA), and k-means clustering, were used to comparatively interpret the spectra. All the methods were consistent and showed that oxygen and sulfur-containing heteroatom species played important roles in clustering samples or peaks. The oxygen-containing samples had higher acidity than the other samples, and the clustering results were linked to properties of the crude oils. This study demonstrated that clustering methods provide a simple and effective way to interpret complex petroleomic data.

A Clustering-Based Fault Detection Method for Steam Boiler Tube in Thermal Power Plant

  • Yu, Jungwon;Jang, Jaeyel;Yoo, Jaeyeong;Park, June Ho;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.848-859
    • /
    • 2016
  • System failures in thermal power plants (TPPs) can lead to serious losses because the equipment is operated under very high pressure and temperature. Therefore, it is indispensable for alarm systems to inform field workers in advance of any abnormal operating conditions in the equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are systematically determined by slope statistic. In the clustering-based method, it is assumed that normal data samples are close to the centers of clusters and those of abnormal are far from the centers. After partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to unseen samples according to the distances between the samples and their closest cluster centroids. Alarm signals are generated if the FSs exceed predefined threshold values. The validity of exponentially weighted moving average to reduce false alarms is also investigated. To verify the performance, the proposed method is applied to failure cases due to boiler tube leakage. The experiment results show that the proposed method can detect the abnormal conditions of the target system successfully.

Correlation Analysis between Injury Index of Multi-cell Headrest through k-means Clustering DB (k-means clustering DB를 통한 Multi-cell headrest의 상해지수 간 상관관계 분석)

  • Sungwook Cho;Seong S. Cheon
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The development of transportation methods has improved human transportation convenience and made it possible to expand the travel radius of people with disabilities who have difficulty moving. However, in the case of WAV (wheelchair Accessible Vehicle), the safety that may occur in a vehicle accident is still lower than that of regular passenger seats. In particular, in the case of a rear-end collision that may occur in a defenseless situation, it can cause fatal neck injuries to disabled passengers. Therefore, a more detailed design plan must be reflected in the headrest to be applied to WAV. In this study, a multi-cell headrest was proposed to implement local compression characteristic distribution of the headrest during rear-end collision of WAV. Afterwards, a correlation analysis was performed between the passenger's NIC (Neck Injury Criterion) and impact energy absorption using the data set construction through analysis and the clustering results using k-means clustering. As a result of clustering, it was confirmed that data clusters with similar characteristics were formed, and a correlation analysis between NIC and impact energy absorption through the characteristics of each cluster was performed. As a result of the analysis, it was confirmed that the softer the cell compression characteristics in Mid3 and Mid6, the more impact energy absorption increases, and the harder the cell compression characteristics in Front2, Mid3, and Mid6, the more effective it is in reducing NIC.

Areal Image Clustering using Hybrid Kohonen Network (Hybrid Kohonen 네트워크에 의한 항공영상 클러스터링)

  • Lee, Kyunghee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.250-251
    • /
    • 2015
  • 본 논문에서는 자기 조직화 기능을 갖는 Kohonen의 SOM(Self organization map) 신경회로망과 주어지는 데이터에 따라 초기의 클러스터 개수를 설정하여 처리하는 수정된 K-Means 알고리즘을 결합한 Hybrid Kohonen Network 를 제안한다. 또한, 실제의 항공영상에 적용하여 고전적인 K-Means 알고리즘 및 고전적인 SOM 알고리즘보다 우수함을 보인다.

  • PDF

A Study on the Robust Content-Based Musical Genre Classification System Using Multi-Feature Clustering (Multi-Feature Clustering을 이용한 강인한 내용 기반 음악 장르 분류 시스템에 관한 연구)

  • Yoon Won-Jung;Lee Kang-Kyu;Park Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.115-120
    • /
    • 2005
  • In this paper, we propose a new robust content-based musical genre classification algorithm using multi-feature clustering(MFC) method. In contrast to previous works, this paper focuses on two practical issues of the system dependency problem on different input query patterns(or portions) and input query lengths which causes serious uncertainty of the system performance. In order to solve these problems, a new approach called multi-feature clustering(MFC) based on k-means clustering is proposed. To verify the performance of the proposed method, several excerpts with variable duration were extracted from every other position in a queried music file. Effectiveness of the system with MFC and without MFC is compared in terms of the classification accuracy. It is demonstrated that the use of MFC significantly improves the system stability of musical genre classification performance with higher accuracy rate.

A Study on the Clustering Method of Row and Multiplex Housing in Seoul Using K-Means Clustering Algorithm and Hedonic Model (K-Means Clustering 알고리즘과 헤도닉 모형을 활용한 서울시 연립·다세대 군집분류 방법에 관한 연구)

  • Kwon, Soonjae;Kim, Seonghyeon;Tak, Onsik;Jeong, Hyeonhee
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.95-118
    • /
    • 2017
  • Recent centrally the downtown area, the transaction between the row housing and multiplex housing is activated and platform services such as Zigbang and Dabang are growing. The row housing and multiplex housing is a blind spot for real estate information. Because there is a social problem, due to the change in market size and information asymmetry due to changes in demand. Also, the 5 or 25 districts used by the Seoul Metropolitan Government or the Korean Appraisal Board(hereafter, KAB) were established within the administrative boundaries and used in existing real estate studies. This is not a district classification for real estate researches because it is zoned urban planning. Based on the existing study, this study found that the city needs to reset the Seoul Metropolitan Government's spatial structure in estimating future housing prices. So, This study attempted to classify the area without spatial heterogeneity by the reflected the property price characteristics of row housing and Multiplex housing. In other words, There has been a problem that an inefficient side has arisen due to the simple division by the existing administrative district. Therefore, this study aims to cluster Seoul as a new area for more efficient real estate analysis. This study was applied to the hedonic model based on the real transactions price data of row housing and multiplex housing. And the K-Means Clustering algorithm was used to cluster the spatial structure of Seoul. In this study, data onto real transactions price of the Seoul Row housing and Multiplex Housing from January 2014 to December 2016, and the official land value of 2016 was used and it provided by Ministry of Land, Infrastructure and Transport(hereafter, MOLIT). Data preprocessing was followed by the following processing procedures: Removal of underground transaction, Price standardization per area, Removal of Real transaction case(above 5 and below -5). In this study, we analyzed data from 132,707 cases to 126,759 data through data preprocessing. The data analysis tool used the R program. After data preprocessing, data model was constructed. Priority, the K-means Clustering was performed. In addition, a regression analysis was conducted using Hedonic model and it was conducted a cosine similarity analysis. Based on the constructed data model, we clustered on the basis of the longitude and latitude of Seoul and conducted comparative analysis of existing area. The results of this study indicated that the goodness of fit of the model was above 75 % and the variables used for the Hedonic model were significant. In other words, 5 or 25 districts that is the area of the existing administrative area are divided into 16 districts. So, this study derived a clustering method of row housing and multiplex housing in Seoul using K-Means Clustering algorithm and hedonic model by the reflected the property price characteristics. Moreover, they presented academic and practical implications and presented the limitations of this study and the direction of future research. Academic implication has clustered by reflecting the property price characteristics in order to improve the problems of the areas used in the Seoul Metropolitan Government, KAB, and Existing Real Estate Research. Another academic implications are that apartments were the main study of existing real estate research, and has proposed a method of classifying area in Seoul using public information(i.e., real-data of MOLIT) of government 3.0. Practical implication is that it can be used as a basic data for real estate related research on row housing and multiplex housing. Another practical implications are that is expected the activation of row housing and multiplex housing research and, that is expected to increase the accuracy of the model of the actual transaction. The future research direction of this study involves conducting various analyses to overcome the limitations of the threshold and indicates the need for deeper research.

A Study on Cluster Hierarchy Depth in Hierarchical Clustering (계층적 클러스터링에서 분류 계층 깊이에 관한 연구)

  • Jin, Hai-Nan;Lee, Shin-won;An, Dong-Un;Chung, Sung-Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.673-676
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. In particular, hierarchical clustering provide a view of the data at different levels, making the large document collections are adapted to people's instinctive and interested requires. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. Think of the factor of simpleness, high-quality and high-efficiency, we combine the two approaches providing a new system named CONDOR system [10] with hierarchical structure based on document clustering using K-means algorithm to "get the best of both worlds". The performance of CONDOR system is compared with the VIVISIMO hierarchical clustering system [9], and performance is analyzed on feature words selection of specific topics and the optimum hierarchy depth.

  • PDF

A Study on a Statistical Matching Method Using Clustering for Data Enrichment

  • Kim Soon Y.;Lee Ki H.;Chung Sung S.
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.509-520
    • /
    • 2005
  • Data fusion is defined as the process of combining data and information from different sources for the effectiveness of the usage of useful information contents. In this paper, we propose a data fusion algorithm using k-means clustering method for data enrichment to improve data quality in knowledge discovery in database(KDD) process. An empirical study was conducted to compare the proposed data fusion technique with the existing techniques and shows that the newly proposed clustering data fusion technique has low MSE in continuous fusion variables.

Clustering Validity of Social Network Subgroup Using Attribute Similarity (속성유사도에 따른 사회연결망 서브그룹의 군집유효성)

  • Yoon, Han-Seong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • For analyzing big data, the social network is increasingly being utilized through relational data, which means the connection characteristics between entities such as people and objects. When the relational data does not exist directly, a social network can be configured by calculating relational data such as attribute similarity from attribute data of entities and using it as links. In this paper, the composition method of the social network using the attribute similarity between entities as a connection relationship, and the clustering method using subgroups for the configured social network are suggested, and the clustering effectiveness of the clustering results is evaluated. The analysis results can vary depending on the type and characteristics of the data to be analyzed, the type of attribute similarity selected, and the criterion value. In addition, the clustering effectiveness may not be consistent depending on the its evaluation method. Therefore, selections and experiments are necessary for better analysis results. Since the analysis results may be different depending on the type and characteristics of the analysis target, options for clustering, etc., there is a limitation. In addition, for performance evaluation of clustering, a study is needed to compare the method of this paper with the conventional method such as k-means.