• Title/Summary/Keyword: K-최근이웃

Search Result 214, Processing Time 0.025 seconds

Classification of Surface Defects on Steel Strip by KNN Classifier (KNN 분류기에 의한 강판 표면 결함의 분류)

  • Kim C.H.;Choi S.H.;Joo W.J.;Kim K.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.379-383
    • /
    • 2005
  • This paper proposes a new steel strip surface inspection system. The system acquires bright and dark field images of defects by using a stroboscopic IR LED light and area camera system and the defect images are preprocessed and segmented in real time for feature extraction. 4113 defect samples of cold roll steel strips are used to develop KNN (k-Nearest Neighbor) classifier which classifies the defects into 8 different types. The developed KNN classifier demonstrates about 85% classifying performance which is considered very plausible result.

  • PDF

Gesture Classification Based on k-Nearest Neighbors Algorithm for Game Interface (게임 인터페이스를 위한 최근접 이웃알고리즘 기반의 제스처 분류)

  • Chae, Ji Hun;Lim, Jong Heon;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.874-880
    • /
    • 2016
  • The gesture classification has been applied to many fields. But it is not efficient in the environment for game interface with low specification devices such as mobile and tablet, In this paper, we propose a effective way for realistic game interface using k-nearest neighbors algorithm for gesture classification. It is time consuming by realtime rendering process in game interface. To reduce the process time while preserving the accuracy, a reconstruction method to minimize error between training and test data sets is also proposed. The experimental results show that the proposed method is better than the conventional methods in both accuracy and time.

Efficient k-nn search on directory-based index structure (평면 색인 구조에서 효율적인 k-근접 이웃 찾기)

  • 김태완;강혜영;이기준
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.779-781
    • /
    • 2003
  • 최근에 제안된 VA-File[6]은 k-NN 질의 처리에서 아주 효율적이라고 알려져 있다. 제시된 방법은 분할된 데이터의 저장 효율성을 보장하지 못하기 때문에 각 차원에 할당된 비트의 수가 증가하면(비트수=3~5) 할수륵 거의 모든 데이터에 대하여 MBH를 생성하는 단점이 있다. k-NN 질의는 거의 모든 데이터를 순차 검색을 통한 일차적 가지제거작업을 한 후. 질의를 수행하기 위한 디스크 접근을 한다. 따라서, 질의를 수행하기 위한 디스크 접근 횟수는 다른 방법들에 비하여 거의 최적에 가까운 접근 횟수를 가지나 주 기억 장치에서 최소-힘을 이용하여 수행하는 일차적 가지 제거 작업의 오버 로더는 간과되었다. 우리는 기존에 알려진 재귀적으로 공간을 두개의 부 공간으로 분할하는 방법을 사용하여 VA-File 과 같은 디렉토리 자료구조를 구축하여 k-NN 실험을 하였다. 이러한 분할된 MBH의 정방형성을 선호하는 방법은 저장 효율성을 보장한다. 실제 데이터에 대한 실험에서 우리가 실험한 간단한 방법은 디스크 접근 시간 및 CPU 시간을 합한 전체 수행시간에서 VA-File에 비하여 최대 93% 정도의 성능 향상이 있다.

  • PDF

Caching Scheme Considering Access Patterns in Graph Environments (그래프 환경에서 접근 패턴을 고려한 캐싱 기법)

  • Yoo, Seunghun;Kim, Minsoo;Bok, Kyoungsoo;Yoo, Jaesoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.19-20
    • /
    • 2017
  • 최근 소셜 미디어와 센서 장비의 기술의 발달로 그래프 데이터의 양이 급격히 증가 하였다. 그래프 데이터의 처리 과정에서 I/O 비용이 발생하여 데이터가 많아지면 병목현상으로 인해 데이터의 처리와 관리에 있어 성능에 한계가 발생한다. 이러한 문제를 해결하기 위해 데이터를 메모리에서 관리하는 캐시 기법에 대한 연구가 이루어 졌다. 본 논문에서는 서브그래프 데이터의 접근 패턴을 고려한 캐싱 기법을 제안한다. 그래프 환경에서 그래프 질의 이력을 통해 패턴을 찾고 질의 관리 테이블과 FP(frequent pattern)-Tree 통해 선별된 데이터를 메모리에 적재시킨다. 또한, 캐시 실패(cache miss)가 발생 하였을 때, 주변의 이웃 정점을 같이 메모리에 적재시킨다. 메모리가 가득 찰 경우 캐시 된 데이터를 퇴출시키는 교체 전략을 제안한다.

  • PDF

Prediction of golf scores on the PGA tour using statistical models (PGA 투어의 골프 스코어 예측 및 분석)

  • Lim, Jungeun;Lim, Youngin;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.41-55
    • /
    • 2017
  • This study predicts the average scores of top 150 PGA golf players on 132 PGA Tour tournaments (2013-2015) using data mining techniques and statistical analysis. This study also aims to predict the Top 10 and Top 25 best players in 4 different playoffs. Linear and nonlinear regression methods were used to predict average scores. Stepwise regression, all best subset, LASSO, ridge regression and principal component regression were used for the linear regression method. Tree, bagging, gradient boosting, neural network, random forests and KNN were used for nonlinear regression method. We found that the average score increases as fairway firmness or green height or average maximum wind speed increases. We also found that the average score decreases as the number of one-putts or scrambling variable or longest driving distance increases. All 11 different models have low prediction error when predicting the average scores of PGA Tournaments in 2015 which is not included in the training set. However, the performances of Bagging and Random Forest models are the best among all models and these two models have the highest prediction accuracy when predicting the Top 10 and Top 25 best players in 4 different playoffs.

A Study on Data Clustering of Light Buoy Using DBSCAN(I) (DBSCAN을 이용한 등부표 위치 데이터 Clustering 연구(I))

  • Gwang-Young Choi;So-Ra Kim;Sang-Won Park;Chae-Uk Song
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.231-238
    • /
    • 2023
  • The position of a light buoy is always flexible due to the influence of external forces such as tides and wind. The position can be checked through AIS (Automatic Identification System) or RTU (Remote Terminal Unit) for AtoN. As a result of analyzing the position data for the last five years (2017-2021) of a light buoy, the average position error was 15.4%. It is necessary to detect position error data and obtain refined position data to prevent navigation safety accidents and management. This study aimed to detect position error data and obtain refined position data by DBSCAN Clustering position data obtained through AIS or RTU for AtoN. For this purpose, 21 position data of Gunsan Port No. 1 light buoy where RTU was installed among western waters with the most position errors were DBSCAN clustered using Python library. The minPts required for DBSCAN Clustering applied the value commonly used for two-dimensional data. Epsilon was calculated and its value was applied using the k-NN (nearest neighbor) algorithm. As a result of DBSCAN Clustering, position error data that did not satisfy minPts and epsilon were detected and refined position data were acquired. This study can be used as asic data for obtaining reliable position data of a light buoy installed with AIS or RTU for AtoN. It is expected to be of great help in preventing navigation safety accidents.

The Optimum Path Selection Mechanism for Inter-PAN Communication using ZigBee (ZigBee 기반의 PAN간 통신에서 최적 경로 선택 메커니즘)

  • Heo, Ji-Hyuk;Yu, Jin;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.354-359
    • /
    • 2007
  • 현재 유비쿼터스 센서 네트워크 환경에 가장 적합한 기술로 ZigBee가 대두 되고 있다. 그러나 ZigBee 네트워크에서는 유비쿼터스 환경에서 중요시하는 이웃한 PAN과의 동기 동작이 고려되지 않아 문제점이 존재한다. 최근 연구에서는 gateway를 통해 PAN간 통신 방법이 제시되었으나 경로가 최적화되지 않는 문제점이 여전히 존재한다. 따라서 본 논문에서는 이를 해결하고자 PAN간 통신에서 다수 gateway의 경쟁을 통해 최적 경로를 선택하여 전력 소모를 최소화할 수 있는 메커니즘을 제안하였다.

  • PDF

Fast Fingerprint Classification Using the Probabilistic Integration of Structural Features (구조적 특징의 확률적 결합을 이용한 빠른 지문 분류)

  • Cho Ung-Keun;Hong Jin-Hyuk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.757-759
    • /
    • 2005
  • Henry의 지문분류법이 창안된 후, 지문분류에 대한 여러 가지 접근 방법이 연구되고 있다. 특이점에 의한 분류는 가장 많이 연구되고 있는 방법이지만, 지문영상의 품질에 민감하기 때문에 정확한 분류가 쉽지 않다. 의사 융선은 특이점과 더불어 지문을 분류하기 위한 특징으로, 특이점의 불완전함을 보완하는데 이용한다. 본 논문에서는 나이브 베이즈 분류기를 이용하여 특이점과 의사 융선 정보의 확률적인 분류 방법을 제안한다. NIST DB 4에 대해 제안하는 방법을 실험한 결과 5클래스 분류에 대해 $85.4\%$의 분류율을 획득하였으며, 제안하는 방법이 신경망, 최근접 이웃에 의한 분류에 비해 더 빠르다는 것을 확인하였다.

  • PDF

Accurate Ad-Effect Estimation Method based on Relevance between User and Item (유저-상품 적합도 기반의 정확한 광고효과 계산 방안)

  • Hong, suk-jin;Ko, yun-yong;Kim, sang-wook;Park, gye-hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.21-22
    • /
    • 2018
  • 최근 소셜 네트워킹 서비스(SNS)의 급격한 성장과 함께, SNS를 대상으로 상품 마케팅을 하는 기업(광고주)들이 증가하고 있다. 이에 따라 SNS에서 상품을 효과적으로 광고할 수 있는 광고 대행 유저들을 광고주에게 추천해주는 서비스들이 등장하였다. 하지만 위와 같은 대부분의 서비스들은 단순히 유저의 이웃 수를 기반으로 유저의 광고 효과를 평가하기 때문에, 유저를 통해 단계적으로 파급되는 광고 효과는 고려하지 못한다는 한계를 가지고 있다. 위와 같은 문제를 해결하기 위해, 본 논문은 영향력 최대화 (Influence maximization) 연구 분야의 기술을 활용하여, (1) 유저를 통해 단계적으로 파급되는 광고 효과를 고려하는 광고효과 최대화 방안을 제안한다. 또한 보다 정확하게 광고효과를 평가하기 위해, (2) 광고 상품과 유저 사이의 적합도를 정의하여 광고 대행인 선출 과정에 적용하였다. 실세계 데이터를 이용한 실험을 통해 제안하는 광고 대행 유저 선출 방안이 전통적인 선출 방안들과 비교하여 광고 효과가 더 큰 유저들을 선출한다는 것을 입증하였다.

  • PDF

Classification of Surface Defect on Steel Strip by KNN Classifier (KNN 분류기에 의한 강판 표면 결함의 분류)

  • Kim Cheol-Ho;Choi Se-Ho;Kim Gi-Bum;Joo Won-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.80-88
    • /
    • 2006
  • This paper proposes a new steel strip surface inspection system. The system acquires bright and dark field images of defects by using a stroboscopic IR LED illuminator and area camera system and the defect images are preprocessed and segmented in real time for feature extraction. 4113 defect samples of hot rolled steel strip are used to develop KNN (k- Nearest Neighbor) classifier which classifies the defects into 8 different types. The developed KNN classifier demonstrates about 85% classifying performance which is considered very plausible result.