• Title/Summary/Keyword: K-$\varepsilon$ model

Search Result 750, Processing Time 0.027 seconds

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3 차원 유동에 대한 수치해석)

  • Yun Jun Yong;Maeng Ju Seong;Byeon Seong Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF

Calculation of Turbulent Flows Using an Implicit Scheme on Two-Dimensional Unstructured Meshes (2차원 비정렬 격자에서의 내재적 기법을 이용한 난류 유동 계산)

  • Kang Hee Jung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.29-37
    • /
    • 1997
  • An implicit viscous turbulent flow solver is developed for two-dimensional geometries on unstructured triangular meshes. The flux terms are discretized based on a cell-centered finite-volume formulation with the Roe's flux-difference splitting. The solution is advanced in time using an implicit backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with the Gauss-Seidel relaxation scheme. The effect of turbulence effects is approximated with a standard $k-{\varepsilon}$ two-equation model which is solved separately from the mean flow equations using the same backward-Euler time integration scheme. The triangular meshes are generated using an advancing-front/layer technique. Validations are made for flows over the NACA0012 airfoil and the Douglas 3-element airfoil. Good agreements are obtained between the numerical results and the experiment.

  • PDF

Shape Optimization of Heat Transfer Surfaces with Staggered Ribs To Enhance Thrbulent Heat Transfer (난류열전달 향상을 위한 엇갈린 리브가 부착된 열전달면의 형상최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1351-1359
    • /
    • 2003
  • This study presents a numerical procedure to optimize shape of streamwise periodic ribs mounted on both of the principal walls to enhance turbulent heat transfer in a rectangular channel flow. The response surface method is used as an optimization technique. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model. The width-to-height ratio of a rib, rib height-to-channel height ratio and rib pitch to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been obtained for the range of 0.02 to 0.1 of weighting factor.

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Study on CFD Analysis of Dying Plant with Rotary Kiln Type for Eco-Industrial Park (로타리 킬른형 건조로 열유동 해석에 관한 연구)

  • Kang, Woo-Jung;Hwang, Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.61-68
    • /
    • 2009
  • This paper presents the numerical analysis of process of sludge drying to know the characteristics of design parameters and develop the new process plant. Finite volume method and $k-{\varepsilon}$ turbulence model were used to analogy the sludge drying furnace. It has been attempted to perform the disposal of sewage sludge such as simple reclaiming and dumping in sea and incineration. Currently, these methods are restricted by national or international government regulations. The drying process is adopted as an effective method for sewage sludge treatment. However sewage sludge makes it difficult to treat with a large volume at the real drying process plant because of its own complicated physical, chemical, and thermal properties. The final design value of moisture content with 10% of the dried sludge can be obtained through the simulated outputs in this study.

  • PDF

Numerical Simulation on Flow and Heat Transfer in a Gas Atomizer (가스분무장치에서 열유동 특성에 관한 전산해석)

  • 이성연
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.55-62
    • /
    • 1997
  • Flow and heat transfer characteristics of gas, and trajectories and cooling characteristics of droplets/particles in a gas atomizer were investigated by a numerical simulation using FLUENT code. Among several kinds of solution method, the k-$\varepsilon$ turbulent model, power-law scheme, SIMPLE algorithm is adopted in this study. Momentum and heat exchange between a continuous phase(gas) and a dispersed phase(particle) were taken into account. Particle trajectories are simulated using the Lagrangian method, and Rosin-Rammler formula is used for the particle size distribution. Streamlines, velocities and pressures of gas, and trajectories, velocities and cooling rates of particles have been investigated for the various gas inlet conditions. Small but very intensive recirculation is found just below the melt orifice, and this recirculation seems to cause the liquid metal to spread radially. Particle trajectory depends on the particle size, the location of particle formation and the turbulent motion of gas. Small particle cools down rapidly, while large diameter particles solidify slowly, and this is mainly due to the differences in thermal inertia.

  • PDF

Numerical Simulation on the Heat Transfer and Smoke Flow Phenomena and Evacuation in the Road funnel Fires (도로터널내부 화재시의 열전달 및 연기거동에 따른 피난안전성평가에 관한 수치적 연구)

  • Min Dong-Ho;Son Bong-Sei
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.87-92
    • /
    • 2005
  • In this paper, numerical simulation are conducted to predict the characteristics of the heat transfer and smoke flow and evacuation in the road tunnel. Fire source are used about 30 MW and the turbulent flow characteristics are considered by standard k-epsilon turbulent model. The effect of transient thermal behavior and disaster prevention can be used for designing the road tunnel.

NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP

  • Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • Numerical modeling of the flow velocity fields for the near corona wire electrohydrodynamic (EHD) flow was conducted. The steady, two-dimensional momentum equations have been computed for a wire-plate type electrostatic precipitator (ESP). The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for the differential equations was used by SIMPLEST algorithm. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson's electric field, ion transport equations and the momentum equation with electric body force were used for the numerical simulation and the Chen-Kim ${\kappa}-{\varepsilon}$ turbulent model numerical results that an EHD secondary flow was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode ($Re_{cw}=12.4$). Secondary flow vortices caused by the EHD increases with increasing discharge current or EHD number, hence pressure drop of ESP increases.

Heat transfer of Mixed convection in rectangular space with constant heat flux (일정 열유속의 열원을 갖는 사각공간의 혼합대류 열전달)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.552-558
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room numerical simulation with a standard k-$\varepsilon$model was carried out. In the present study the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with a downward angle depresses recirculation flow causing a strong stream in the wider space of the room Ventilation and removal of the released heat are promoted with this pattern, There is a possibility of local extreme heating at the upper surface of the engine when supply and exhaust ports of air are in bilateral symmetry.

  • PDF

Effect of supply air temperature and airflow rate on ventilation effectiveness in an underfloor air conditioning space (바닥취출 공조공간에서 급기온도 및 급기풍속이 환기효율에 미치는 영향)

  • 정광섭;한화택;홍승재
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.640-648
    • /
    • 1998
  • A numerical study has been conducted to investigate the effect of inflow supply air temperature and velocity on ventilation effectiveness in an underfloor air conditioning space. A low Reynolds number k-$\varepsilon$ model is implemented to calculate steady state turbulent velocity distributions. A step-down injection method is used to calculate local and room mean ages from transient concentrations based on the concept of the age of air. Results show that there is a significant effect of Archimedes number on ventilation effectiveness especially for cooling conditions. Reynolds number shows relatively minor effect on velocity distribution and ventilation effectiveness especially for isothermal and heating conditions. It can be concluded that underfloor air conditioning system provides good ventilation characteristics for cooling conditions because of temperature stratification in the space.

  • PDF