• 제목/요약/키워드: K fold cross-verification technology

검색결과 2건 처리시간 0.015초

SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구 (Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm)

  • 왕우동;박상봉;허정화
    • 문화기술의 융합
    • /
    • 제9권5호
    • /
    • pp.843-847
    • /
    • 2023
  • 본 논문은 현대 기술이 발전함에 따라 다양한 화학 제품 및 인화성 물질이 광범위하게 사용되면서 각종 산업재해 및 농지와 대형 산불로 이어질 수 있는 화재 예방을 위해 효율적인 화재 식별을 탐지하는 모델을 제시한다. 본 논문에서는 영상을 활용하여 효율이 높고 빠른 시간안에 화재 연기를 검출할 수 있는 알고리즘을 제시하며, SVM(Support Vector Machine)과 K 접힘 교차 검증 기술을 기반으로 한 알고리즘을 제시한다. 영상을 분석하여 화재 및 연기 검출 알고리즘은 기존의 알고리즘에 비해 상대적으로 검출 성능이 우수하며, 본 논문에서 검출하는 화재 및 연기의 특징 분석이 안정적이고 효율적으로 분석되어 향후 화재 위험에 노출될 수 있는 다양한 분야에서 활용될 것으로 판단된다.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.