• Title/Summary/Keyword: K fold cross-verification technology

Search Result 2, Processing Time 0.019 seconds

Study on fire smoke identification method based on SVM and K fold cross verification fusion algorithm (SVM과 K 접힘 교차 검증 융합 알고리즘 기반의 화재 연기 식별 방법 연구)

  • Wang Yudong;Sangbong Park;Jeonghwa Heo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.843-847
    • /
    • 2023
  • In this paper, we propose a model for detecting efficient fire identification to prevent fires that can lead to various industrial accidents, farmland and large forest fires, with the widespread use of various chemicals and flammable substances as modern technology advances. This paper presents an algorithm that can detect fire smoke in a high-efficiency and short time using images, and an algorithm based on SVM(Support Vector Machine) and K fold cross-verification technologies. By analyzing images, fire and smoke detection algorithms have relatively superior detection performance compared to existing algorithms, and the analysis of fire and smoke characteristics detected in this paper is analyzed stably and efficiently and is expected to be used in various fields that may be exposed to fire risks in the future.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.